yin771's picture
Upload folder using huggingface_hub
44c7b81 verified
[2024-09-21 02:04:11,191][00440] Saving configuration to /content/train_dir/default_experiment/config.json...
[2024-09-21 02:04:11,195][00440] Rollout worker 0 uses device cpu
[2024-09-21 02:04:11,199][00440] Rollout worker 1 uses device cpu
[2024-09-21 02:04:11,200][00440] Rollout worker 2 uses device cpu
[2024-09-21 02:04:11,202][00440] Rollout worker 3 uses device cpu
[2024-09-21 02:04:11,204][00440] Rollout worker 4 uses device cpu
[2024-09-21 02:04:11,205][00440] Rollout worker 5 uses device cpu
[2024-09-21 02:04:11,210][00440] Rollout worker 6 uses device cpu
[2024-09-21 02:04:11,211][00440] Rollout worker 7 uses device cpu
[2024-09-21 02:04:11,375][00440] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-21 02:04:11,377][00440] InferenceWorker_p0-w0: min num requests: 2
[2024-09-21 02:04:11,412][00440] Starting all processes...
[2024-09-21 02:04:11,413][00440] Starting process learner_proc0
[2024-09-21 02:04:12,258][00440] Starting all processes...
[2024-09-21 02:04:12,290][00440] Starting process inference_proc0-0
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc0
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc1
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc2
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc3
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc4
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc5
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc6
[2024-09-21 02:04:12,292][00440] Starting process rollout_proc7
[2024-09-21 02:04:31,631][02550] Worker 5 uses CPU cores [1]
[2024-09-21 02:04:31,795][00440] Heartbeat connected on RolloutWorker_w5
[2024-09-21 02:04:32,139][02531] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-21 02:04:32,140][02531] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-09-21 02:04:32,215][02531] Num visible devices: 1
[2024-09-21 02:04:32,255][00440] Heartbeat connected on Batcher_0
[2024-09-21 02:04:32,256][02531] Starting seed is not provided
[2024-09-21 02:04:32,259][02531] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-21 02:04:32,259][02531] Initializing actor-critic model on device cuda:0
[2024-09-21 02:04:32,261][02531] RunningMeanStd input shape: (3, 72, 128)
[2024-09-21 02:04:32,266][02531] RunningMeanStd input shape: (1,)
[2024-09-21 02:04:32,398][02549] Worker 4 uses CPU cores [0]
[2024-09-21 02:04:32,417][02531] ConvEncoder: input_channels=3
[2024-09-21 02:04:32,488][02547] Worker 2 uses CPU cores [0]
[2024-09-21 02:04:32,505][00440] Heartbeat connected on RolloutWorker_w4
[2024-09-21 02:04:32,588][00440] Heartbeat connected on RolloutWorker_w2
[2024-09-21 02:04:32,677][02552] Worker 7 uses CPU cores [1]
[2024-09-21 02:04:32,757][02544] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-21 02:04:32,760][02544] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2024-09-21 02:04:32,764][00440] Heartbeat connected on RolloutWorker_w7
[2024-09-21 02:04:32,798][02545] Worker 0 uses CPU cores [0]
[2024-09-21 02:04:32,862][02548] Worker 3 uses CPU cores [1]
[2024-09-21 02:04:32,875][02551] Worker 6 uses CPU cores [0]
[2024-09-21 02:04:32,893][02544] Num visible devices: 1
[2024-09-21 02:04:32,904][00440] Heartbeat connected on RolloutWorker_w3
[2024-09-21 02:04:32,909][00440] Heartbeat connected on RolloutWorker_w0
[2024-09-21 02:04:32,922][00440] Heartbeat connected on InferenceWorker_p0-w0
[2024-09-21 02:04:32,965][00440] Heartbeat connected on RolloutWorker_w6
[2024-09-21 02:04:32,972][02546] Worker 1 uses CPU cores [1]
[2024-09-21 02:04:33,013][00440] Heartbeat connected on RolloutWorker_w1
[2024-09-21 02:04:33,044][02531] Conv encoder output size: 512
[2024-09-21 02:04:33,045][02531] Policy head output size: 512
[2024-09-21 02:04:33,156][02531] Created Actor Critic model with architecture:
[2024-09-21 02:04:33,157][02531] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2024-09-21 02:04:33,821][02531] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-09-21 02:04:34,565][02531] No checkpoints found
[2024-09-21 02:04:34,565][02531] Did not load from checkpoint, starting from scratch!
[2024-09-21 02:04:34,565][02531] Initialized policy 0 weights for model version 0
[2024-09-21 02:04:34,570][02531] LearnerWorker_p0 finished initialization!
[2024-09-21 02:04:34,572][02531] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-21 02:04:34,572][00440] Heartbeat connected on LearnerWorker_p0
[2024-09-21 02:04:34,809][02544] RunningMeanStd input shape: (3, 72, 128)
[2024-09-21 02:04:34,810][02544] RunningMeanStd input shape: (1,)
[2024-09-21 02:04:34,823][02544] ConvEncoder: input_channels=3
[2024-09-21 02:04:34,935][02544] Conv encoder output size: 512
[2024-09-21 02:04:34,935][02544] Policy head output size: 512
[2024-09-21 02:04:34,995][00440] Inference worker 0-0 is ready!
[2024-09-21 02:04:34,996][00440] All inference workers are ready! Signal rollout workers to start!
[2024-09-21 02:04:35,248][02546] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,249][02547] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,252][02552] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,250][02548] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,253][02550] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,252][02551] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,255][02549] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,254][02545] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:04:35,974][00440] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-09-21 02:04:36,359][02549] Decorrelating experience for 0 frames...
[2024-09-21 02:04:36,358][02551] Decorrelating experience for 0 frames...
[2024-09-21 02:04:36,990][02552] Decorrelating experience for 0 frames...
[2024-09-21 02:04:36,996][02548] Decorrelating experience for 0 frames...
[2024-09-21 02:04:36,995][02546] Decorrelating experience for 0 frames...
[2024-09-21 02:04:36,995][02550] Decorrelating experience for 0 frames...
[2024-09-21 02:04:37,183][02545] Decorrelating experience for 0 frames...
[2024-09-21 02:04:37,203][02549] Decorrelating experience for 32 frames...
[2024-09-21 02:04:37,665][02551] Decorrelating experience for 32 frames...
[2024-09-21 02:04:38,171][02551] Decorrelating experience for 64 frames...
[2024-09-21 02:04:38,354][02552] Decorrelating experience for 32 frames...
[2024-09-21 02:04:38,356][02548] Decorrelating experience for 32 frames...
[2024-09-21 02:04:38,358][02546] Decorrelating experience for 32 frames...
[2024-09-21 02:04:38,708][02550] Decorrelating experience for 32 frames...
[2024-09-21 02:04:38,900][02545] Decorrelating experience for 32 frames...
[2024-09-21 02:04:39,910][02547] Decorrelating experience for 0 frames...
[2024-09-21 02:04:40,070][02551] Decorrelating experience for 96 frames...
[2024-09-21 02:04:40,958][02552] Decorrelating experience for 64 frames...
[2024-09-21 02:04:40,957][02546] Decorrelating experience for 64 frames...
[2024-09-21 02:04:40,976][00440] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-09-21 02:04:41,607][02550] Decorrelating experience for 64 frames...
[2024-09-21 02:04:41,840][02549] Decorrelating experience for 64 frames...
[2024-09-21 02:04:42,624][02548] Decorrelating experience for 64 frames...
[2024-09-21 02:04:43,231][02547] Decorrelating experience for 32 frames...
[2024-09-21 02:04:43,229][02545] Decorrelating experience for 64 frames...
[2024-09-21 02:04:43,794][02546] Decorrelating experience for 96 frames...
[2024-09-21 02:04:43,797][02552] Decorrelating experience for 96 frames...
[2024-09-21 02:04:45,546][02550] Decorrelating experience for 96 frames...
[2024-09-21 02:04:45,926][02548] Decorrelating experience for 96 frames...
[2024-09-21 02:04:45,974][00440] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 8.6. Samples: 86. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-09-21 02:04:45,977][00440] Avg episode reward: [(0, '2.048')]
[2024-09-21 02:04:46,276][02549] Decorrelating experience for 96 frames...
[2024-09-21 02:04:46,394][02545] Decorrelating experience for 96 frames...
[2024-09-21 02:04:47,293][02547] Decorrelating experience for 64 frames...
[2024-09-21 02:04:49,026][02531] Signal inference workers to stop experience collection...
[2024-09-21 02:04:49,033][02544] InferenceWorker_p0-w0: stopping experience collection
[2024-09-21 02:04:49,527][02547] Decorrelating experience for 96 frames...
[2024-09-21 02:04:50,974][00440] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 175.1. Samples: 2626. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-09-21 02:04:50,976][00440] Avg episode reward: [(0, '2.853')]
[2024-09-21 02:04:52,881][02531] Signal inference workers to resume experience collection...
[2024-09-21 02:04:52,882][02544] InferenceWorker_p0-w0: resuming experience collection
[2024-09-21 02:04:55,974][00440] Fps is (10 sec: 1638.4, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 16384. Throughput: 0: 134.1. Samples: 2682. Policy #0 lag: (min: 0.0, avg: 1.4, max: 2.0)
[2024-09-21 02:04:55,977][00440] Avg episode reward: [(0, '3.380')]
[2024-09-21 02:05:00,974][00440] Fps is (10 sec: 2867.2, 60 sec: 1146.9, 300 sec: 1146.9). Total num frames: 28672. Throughput: 0: 263.9. Samples: 6598. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2024-09-21 02:05:00,980][00440] Avg episode reward: [(0, '3.931')]
[2024-09-21 02:05:04,282][02544] Updated weights for policy 0, policy_version 10 (0.0020)
[2024-09-21 02:05:05,974][00440] Fps is (10 sec: 2867.2, 60 sec: 1501.9, 300 sec: 1501.9). Total num frames: 45056. Throughput: 0: 385.7. Samples: 11572. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:05:05,977][00440] Avg episode reward: [(0, '4.257')]
[2024-09-21 02:05:10,974][00440] Fps is (10 sec: 4096.0, 60 sec: 1989.5, 300 sec: 1989.5). Total num frames: 69632. Throughput: 0: 425.0. Samples: 14874. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2024-09-21 02:05:10,977][00440] Avg episode reward: [(0, '4.494')]
[2024-09-21 02:05:13,540][02544] Updated weights for policy 0, policy_version 20 (0.0018)
[2024-09-21 02:05:15,974][00440] Fps is (10 sec: 4096.0, 60 sec: 2150.4, 300 sec: 2150.4). Total num frames: 86016. Throughput: 0: 530.1. Samples: 21206. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:05:15,981][00440] Avg episode reward: [(0, '4.487')]
[2024-09-21 02:05:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 2275.6, 300 sec: 2275.6). Total num frames: 102400. Throughput: 0: 563.5. Samples: 25358. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:05:20,976][00440] Avg episode reward: [(0, '4.389')]
[2024-09-21 02:05:20,985][02531] Saving new best policy, reward=4.389!
[2024-09-21 02:05:25,607][02544] Updated weights for policy 0, policy_version 30 (0.0036)
[2024-09-21 02:05:25,974][00440] Fps is (10 sec: 3686.3, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 122880. Throughput: 0: 632.8. Samples: 28474. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:05:25,983][00440] Avg episode reward: [(0, '4.418')]
[2024-09-21 02:05:25,997][02531] Saving new best policy, reward=4.418!
[2024-09-21 02:05:30,974][00440] Fps is (10 sec: 4095.9, 60 sec: 2606.5, 300 sec: 2606.5). Total num frames: 143360. Throughput: 0: 778.1. Samples: 35102. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:05:30,979][00440] Avg episode reward: [(0, '4.624')]
[2024-09-21 02:05:30,983][02531] Saving new best policy, reward=4.624!
[2024-09-21 02:05:35,974][00440] Fps is (10 sec: 3276.9, 60 sec: 2594.1, 300 sec: 2594.1). Total num frames: 155648. Throughput: 0: 824.7. Samples: 39736. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:05:35,980][00440] Avg episode reward: [(0, '4.551')]
[2024-09-21 02:05:37,572][02544] Updated weights for policy 0, policy_version 40 (0.0043)
[2024-09-21 02:05:40,974][00440] Fps is (10 sec: 3276.9, 60 sec: 2935.6, 300 sec: 2709.7). Total num frames: 176128. Throughput: 0: 874.0. Samples: 42012. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:05:40,978][00440] Avg episode reward: [(0, '4.422')]
[2024-09-21 02:05:45,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3345.1, 300 sec: 2867.2). Total num frames: 200704. Throughput: 0: 937.3. Samples: 48778. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:05:45,980][00440] Avg episode reward: [(0, '4.602')]
[2024-09-21 02:05:46,627][02544] Updated weights for policy 0, policy_version 50 (0.0027)
[2024-09-21 02:05:50,981][00440] Fps is (10 sec: 4093.0, 60 sec: 3617.7, 300 sec: 2894.2). Total num frames: 217088. Throughput: 0: 957.2. Samples: 54652. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:05:50,987][00440] Avg episode reward: [(0, '4.527')]
[2024-09-21 02:05:55,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 2867.2). Total num frames: 229376. Throughput: 0: 929.4. Samples: 56696. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:05:55,981][00440] Avg episode reward: [(0, '4.347')]
[2024-09-21 02:06:00,975][00440] Fps is (10 sec: 2459.1, 60 sec: 3549.8, 300 sec: 2843.1). Total num frames: 241664. Throughput: 0: 871.6. Samples: 60430. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:06:00,980][00440] Avg episode reward: [(0, '4.245')]
[2024-09-21 02:06:01,036][02544] Updated weights for policy 0, policy_version 60 (0.0034)
[2024-09-21 02:06:05,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 2912.7). Total num frames: 262144. Throughput: 0: 902.8. Samples: 65984. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:06:05,979][00440] Avg episode reward: [(0, '4.608')]
[2024-09-21 02:06:05,990][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000064_262144.pth...
[2024-09-21 02:06:10,974][00440] Fps is (10 sec: 3686.8, 60 sec: 3481.6, 300 sec: 2931.9). Total num frames: 278528. Throughput: 0: 888.0. Samples: 68432. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:06:10,979][00440] Avg episode reward: [(0, '4.718')]
[2024-09-21 02:06:10,984][02531] Saving new best policy, reward=4.718!
[2024-09-21 02:06:13,606][02544] Updated weights for policy 0, policy_version 70 (0.0018)
[2024-09-21 02:06:15,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 2949.1). Total num frames: 294912. Throughput: 0: 837.6. Samples: 72794. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:06:15,978][00440] Avg episode reward: [(0, '4.774')]
[2024-09-21 02:06:15,991][02531] Saving new best policy, reward=4.774!
[2024-09-21 02:06:20,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3003.7). Total num frames: 315392. Throughput: 0: 877.3. Samples: 79214. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:06:20,980][00440] Avg episode reward: [(0, '4.712')]
[2024-09-21 02:06:23,024][02544] Updated weights for policy 0, policy_version 80 (0.0026)
[2024-09-21 02:06:25,974][00440] Fps is (10 sec: 4096.1, 60 sec: 3549.9, 300 sec: 3053.4). Total num frames: 335872. Throughput: 0: 897.8. Samples: 82414. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:06:25,979][00440] Avg episode reward: [(0, '4.499')]
[2024-09-21 02:06:30,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3027.5). Total num frames: 348160. Throughput: 0: 840.2. Samples: 86588. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:06:30,979][00440] Avg episode reward: [(0, '4.419')]
[2024-09-21 02:06:34,844][02544] Updated weights for policy 0, policy_version 90 (0.0036)
[2024-09-21 02:06:35,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3106.1). Total num frames: 372736. Throughput: 0: 847.3. Samples: 92774. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:06:35,981][00440] Avg episode reward: [(0, '4.629')]
[2024-09-21 02:06:40,975][00440] Fps is (10 sec: 4505.4, 60 sec: 3618.1, 300 sec: 3145.7). Total num frames: 393216. Throughput: 0: 877.8. Samples: 96196. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:06:40,979][00440] Avg episode reward: [(0, '4.924')]
[2024-09-21 02:06:40,981][02531] Saving new best policy, reward=4.924!
[2024-09-21 02:06:45,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3119.3). Total num frames: 405504. Throughput: 0: 910.9. Samples: 101420. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:06:45,977][00440] Avg episode reward: [(0, '4.867')]
[2024-09-21 02:06:46,307][02544] Updated weights for policy 0, policy_version 100 (0.0022)
[2024-09-21 02:06:50,975][00440] Fps is (10 sec: 3276.5, 60 sec: 3481.9, 300 sec: 3155.4). Total num frames: 425984. Throughput: 0: 903.4. Samples: 106636. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-09-21 02:06:50,981][00440] Avg episode reward: [(0, '5.093')]
[2024-09-21 02:06:50,984][02531] Saving new best policy, reward=5.093!
[2024-09-21 02:06:55,835][02544] Updated weights for policy 0, policy_version 110 (0.0046)
[2024-09-21 02:06:55,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3218.3). Total num frames: 450560. Throughput: 0: 923.8. Samples: 110004. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:06:55,977][00440] Avg episode reward: [(0, '4.928')]
[2024-09-21 02:07:00,974][00440] Fps is (10 sec: 4096.5, 60 sec: 3754.7, 300 sec: 3220.3). Total num frames: 466944. Throughput: 0: 965.1. Samples: 116222. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:07:00,979][00440] Avg episode reward: [(0, '4.989')]
[2024-09-21 02:07:05,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3194.9). Total num frames: 479232. Throughput: 0: 914.3. Samples: 120358. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:07:05,978][00440] Avg episode reward: [(0, '5.089')]
[2024-09-21 02:07:07,875][02544] Updated weights for policy 0, policy_version 120 (0.0026)
[2024-09-21 02:07:10,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3250.4). Total num frames: 503808. Throughput: 0: 915.7. Samples: 123622. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:07:10,980][00440] Avg episode reward: [(0, '5.305')]
[2024-09-21 02:07:10,983][02531] Saving new best policy, reward=5.305!
[2024-09-21 02:07:15,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3276.8). Total num frames: 524288. Throughput: 0: 974.2. Samples: 130426. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:07:15,977][00440] Avg episode reward: [(0, '5.082')]
[2024-09-21 02:07:17,969][02544] Updated weights for policy 0, policy_version 130 (0.0025)
[2024-09-21 02:07:20,975][00440] Fps is (10 sec: 3276.4, 60 sec: 3686.3, 300 sec: 3252.0). Total num frames: 536576. Throughput: 0: 939.0. Samples: 135032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:07:20,979][00440] Avg episode reward: [(0, '5.060')]
[2024-09-21 02:07:25,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3276.8). Total num frames: 557056. Throughput: 0: 914.7. Samples: 137358. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:07:25,977][00440] Avg episode reward: [(0, '5.321')]
[2024-09-21 02:07:25,989][02531] Saving new best policy, reward=5.321!
[2024-09-21 02:07:29,183][02544] Updated weights for policy 0, policy_version 140 (0.0044)
[2024-09-21 02:07:30,974][00440] Fps is (10 sec: 4506.1, 60 sec: 3891.2, 300 sec: 3323.6). Total num frames: 581632. Throughput: 0: 944.0. Samples: 143902. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:07:30,977][00440] Avg episode reward: [(0, '5.661')]
[2024-09-21 02:07:30,981][02531] Saving new best policy, reward=5.661!
[2024-09-21 02:07:35,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3322.3). Total num frames: 598016. Throughput: 0: 954.2. Samples: 149574. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:07:35,977][00440] Avg episode reward: [(0, '5.651')]
[2024-09-21 02:07:40,974][00440] Fps is (10 sec: 2867.1, 60 sec: 3618.1, 300 sec: 3298.9). Total num frames: 610304. Throughput: 0: 923.9. Samples: 151578. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:07:40,982][00440] Avg episode reward: [(0, '5.616')]
[2024-09-21 02:07:41,018][02544] Updated weights for policy 0, policy_version 150 (0.0027)
[2024-09-21 02:07:45,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3341.5). Total num frames: 634880. Throughput: 0: 918.9. Samples: 157574. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:07:45,981][00440] Avg episode reward: [(0, '5.418')]
[2024-09-21 02:07:50,170][02544] Updated weights for policy 0, policy_version 160 (0.0020)
[2024-09-21 02:07:50,976][00440] Fps is (10 sec: 4504.7, 60 sec: 3822.9, 300 sec: 3360.8). Total num frames: 655360. Throughput: 0: 978.3. Samples: 164382. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:07:50,979][00440] Avg episode reward: [(0, '5.663')]
[2024-09-21 02:07:50,983][02531] Saving new best policy, reward=5.663!
[2024-09-21 02:07:55,974][00440] Fps is (10 sec: 3276.7, 60 sec: 3618.1, 300 sec: 3338.2). Total num frames: 667648. Throughput: 0: 948.5. Samples: 166304. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:07:55,982][00440] Avg episode reward: [(0, '5.831')]
[2024-09-21 02:07:55,992][02531] Saving new best policy, reward=5.831!
[2024-09-21 02:08:00,974][00440] Fps is (10 sec: 3277.5, 60 sec: 3686.4, 300 sec: 3356.7). Total num frames: 688128. Throughput: 0: 900.5. Samples: 170950. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:08:00,977][00440] Avg episode reward: [(0, '6.218')]
[2024-09-21 02:08:00,980][02531] Saving new best policy, reward=6.218!
[2024-09-21 02:08:02,395][02544] Updated weights for policy 0, policy_version 170 (0.0035)
[2024-09-21 02:08:05,974][00440] Fps is (10 sec: 4505.7, 60 sec: 3891.2, 300 sec: 3393.8). Total num frames: 712704. Throughput: 0: 947.0. Samples: 177646. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:08:05,980][00440] Avg episode reward: [(0, '5.621')]
[2024-09-21 02:08:05,989][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000174_712704.pth...
[2024-09-21 02:08:10,975][00440] Fps is (10 sec: 3686.0, 60 sec: 3686.3, 300 sec: 3372.0). Total num frames: 724992. Throughput: 0: 964.2. Samples: 180746. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:08:10,979][00440] Avg episode reward: [(0, '5.909')]
[2024-09-21 02:08:14,010][02544] Updated weights for policy 0, policy_version 180 (0.0032)
[2024-09-21 02:08:15,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3369.9). Total num frames: 741376. Throughput: 0: 909.6. Samples: 184834. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:08:15,977][00440] Avg episode reward: [(0, '6.230')]
[2024-09-21 02:08:15,989][02531] Saving new best policy, reward=6.230!
[2024-09-21 02:08:20,974][00440] Fps is (10 sec: 4096.5, 60 sec: 3823.0, 300 sec: 3404.2). Total num frames: 765952. Throughput: 0: 924.9. Samples: 191194. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:08:20,980][00440] Avg episode reward: [(0, '6.463')]
[2024-09-21 02:08:20,984][02531] Saving new best policy, reward=6.463!
[2024-09-21 02:08:23,563][02544] Updated weights for policy 0, policy_version 190 (0.0042)
[2024-09-21 02:08:25,978][00440] Fps is (10 sec: 4503.7, 60 sec: 3822.7, 300 sec: 3419.2). Total num frames: 786432. Throughput: 0: 954.5. Samples: 194536. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:08:25,981][00440] Avg episode reward: [(0, '6.796')]
[2024-09-21 02:08:25,994][02531] Saving new best policy, reward=6.796!
[2024-09-21 02:08:30,976][00440] Fps is (10 sec: 3276.2, 60 sec: 3618.0, 300 sec: 3398.8). Total num frames: 798720. Throughput: 0: 927.6. Samples: 199318. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:08:30,983][00440] Avg episode reward: [(0, '6.732')]
[2024-09-21 02:08:35,974][00440] Fps is (10 sec: 2458.6, 60 sec: 3549.9, 300 sec: 3379.2). Total num frames: 811008. Throughput: 0: 861.9. Samples: 203164. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:08:35,976][00440] Avg episode reward: [(0, '6.752')]
[2024-09-21 02:08:38,180][02544] Updated weights for policy 0, policy_version 200 (0.0049)
[2024-09-21 02:08:40,974][00440] Fps is (10 sec: 2867.7, 60 sec: 3618.1, 300 sec: 3377.1). Total num frames: 827392. Throughput: 0: 864.0. Samples: 205186. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:08:40,981][00440] Avg episode reward: [(0, '6.180')]
[2024-09-21 02:08:45,978][00440] Fps is (10 sec: 3684.9, 60 sec: 3549.6, 300 sec: 3391.4). Total num frames: 847872. Throughput: 0: 891.3. Samples: 211062. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:08:45,990][00440] Avg episode reward: [(0, '6.355')]
[2024-09-21 02:08:50,470][02544] Updated weights for policy 0, policy_version 210 (0.0025)
[2024-09-21 02:08:50,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.5, 300 sec: 3373.2). Total num frames: 860160. Throughput: 0: 834.6. Samples: 215202. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:08:50,980][00440] Avg episode reward: [(0, '6.578')]
[2024-09-21 02:08:55,974][00440] Fps is (10 sec: 3688.0, 60 sec: 3618.1, 300 sec: 3402.8). Total num frames: 884736. Throughput: 0: 837.2. Samples: 218418. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:08:55,977][00440] Avg episode reward: [(0, '7.529')]
[2024-09-21 02:08:55,989][02531] Saving new best policy, reward=7.529!
[2024-09-21 02:08:59,771][02544] Updated weights for policy 0, policy_version 220 (0.0039)
[2024-09-21 02:09:00,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3415.9). Total num frames: 905216. Throughput: 0: 895.0. Samples: 225110. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:09:00,978][00440] Avg episode reward: [(0, '8.144')]
[2024-09-21 02:09:00,983][02531] Saving new best policy, reward=8.144!
[2024-09-21 02:09:05,977][00440] Fps is (10 sec: 3275.7, 60 sec: 3413.2, 300 sec: 3398.1). Total num frames: 917504. Throughput: 0: 859.0. Samples: 229854. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:05,980][00440] Avg episode reward: [(0, '8.674')]
[2024-09-21 02:09:05,994][02531] Saving new best policy, reward=8.674!
[2024-09-21 02:09:10,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3410.9). Total num frames: 937984. Throughput: 0: 833.6. Samples: 232044. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:09:10,977][00440] Avg episode reward: [(0, '9.143')]
[2024-09-21 02:09:10,982][02531] Saving new best policy, reward=9.143!
[2024-09-21 02:09:11,726][02544] Updated weights for policy 0, policy_version 230 (0.0032)
[2024-09-21 02:09:15,974][00440] Fps is (10 sec: 4097.2, 60 sec: 3618.1, 300 sec: 3423.1). Total num frames: 958464. Throughput: 0: 877.4. Samples: 238798. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:15,985][00440] Avg episode reward: [(0, '9.054')]
[2024-09-21 02:09:20,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3420.5). Total num frames: 974848. Throughput: 0: 919.6. Samples: 244548. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:20,981][00440] Avg episode reward: [(0, '8.765')]
[2024-09-21 02:09:22,611][02544] Updated weights for policy 0, policy_version 240 (0.0043)
[2024-09-21 02:09:25,974][00440] Fps is (10 sec: 3276.9, 60 sec: 3413.6, 300 sec: 3418.0). Total num frames: 991232. Throughput: 0: 919.4. Samples: 246558. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:09:25,979][00440] Avg episode reward: [(0, '8.592')]
[2024-09-21 02:09:30,975][00440] Fps is (10 sec: 4095.8, 60 sec: 3618.2, 300 sec: 3443.4). Total num frames: 1015808. Throughput: 0: 918.5. Samples: 252390. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:09:30,981][00440] Avg episode reward: [(0, '8.762')]
[2024-09-21 02:09:32,556][02544] Updated weights for policy 0, policy_version 250 (0.0023)
[2024-09-21 02:09:35,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3512.9). Total num frames: 1036288. Throughput: 0: 976.2. Samples: 259130. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:35,977][00440] Avg episode reward: [(0, '8.791')]
[2024-09-21 02:09:40,974][00440] Fps is (10 sec: 3277.0, 60 sec: 3686.4, 300 sec: 3554.5). Total num frames: 1048576. Throughput: 0: 950.2. Samples: 261178. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:09:40,977][00440] Avg episode reward: [(0, '8.562')]
[2024-09-21 02:09:44,770][02544] Updated weights for policy 0, policy_version 260 (0.0020)
[2024-09-21 02:09:45,974][00440] Fps is (10 sec: 3276.7, 60 sec: 3686.6, 300 sec: 3623.9). Total num frames: 1069056. Throughput: 0: 909.9. Samples: 266058. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:45,977][00440] Avg episode reward: [(0, '8.729')]
[2024-09-21 02:09:50,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3651.7). Total num frames: 1093632. Throughput: 0: 957.6. Samples: 272942. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:50,981][00440] Avg episode reward: [(0, '8.677')]
[2024-09-21 02:09:54,684][02544] Updated weights for policy 0, policy_version 270 (0.0024)
[2024-09-21 02:09:55,977][00440] Fps is (10 sec: 3685.3, 60 sec: 3686.2, 300 sec: 3651.6). Total num frames: 1105920. Throughput: 0: 976.3. Samples: 275980. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:09:55,981][00440] Avg episode reward: [(0, '9.191')]
[2024-09-21 02:09:55,994][02531] Saving new best policy, reward=9.191!
[2024-09-21 02:10:00,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 1122304. Throughput: 0: 914.1. Samples: 279932. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:10:00,981][00440] Avg episode reward: [(0, '8.912')]
[2024-09-21 02:10:05,685][02544] Updated weights for policy 0, policy_version 280 (0.0036)
[2024-09-21 02:10:05,974][00440] Fps is (10 sec: 4097.3, 60 sec: 3823.1, 300 sec: 3651.7). Total num frames: 1146880. Throughput: 0: 930.7. Samples: 286430. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:10:05,976][00440] Avg episode reward: [(0, '9.567')]
[2024-09-21 02:10:05,989][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000280_1146880.pth...
[2024-09-21 02:10:06,121][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000064_262144.pth
[2024-09-21 02:10:06,141][02531] Saving new best policy, reward=9.567!
[2024-09-21 02:10:10,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3665.6). Total num frames: 1167360. Throughput: 0: 956.9. Samples: 289618. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:10:10,980][00440] Avg episode reward: [(0, '9.525')]
[2024-09-21 02:10:15,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1179648. Throughput: 0: 934.5. Samples: 294444. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-09-21 02:10:15,978][00440] Avg episode reward: [(0, '9.791')]
[2024-09-21 02:10:15,992][02531] Saving new best policy, reward=9.791!
[2024-09-21 02:10:17,880][02544] Updated weights for policy 0, policy_version 290 (0.0024)
[2024-09-21 02:10:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3651.7). Total num frames: 1200128. Throughput: 0: 903.5. Samples: 299788. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:10:20,976][00440] Avg episode reward: [(0, '10.944')]
[2024-09-21 02:10:20,980][02531] Saving new best policy, reward=10.944!
[2024-09-21 02:10:25,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3651.7). Total num frames: 1220608. Throughput: 0: 932.0. Samples: 303118. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:10:25,978][00440] Avg episode reward: [(0, '12.020')]
[2024-09-21 02:10:25,994][02531] Saving new best policy, reward=12.020!
[2024-09-21 02:10:27,126][02544] Updated weights for policy 0, policy_version 300 (0.0024)
[2024-09-21 02:10:30,976][00440] Fps is (10 sec: 3685.8, 60 sec: 3686.3, 300 sec: 3665.6). Total num frames: 1236992. Throughput: 0: 955.0. Samples: 309034. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:10:30,978][00440] Avg episode reward: [(0, '12.872')]
[2024-09-21 02:10:30,981][02531] Saving new best policy, reward=12.872!
[2024-09-21 02:10:35,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 1253376. Throughput: 0: 896.1. Samples: 313266. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:10:35,977][00440] Avg episode reward: [(0, '12.615')]
[2024-09-21 02:10:39,298][02544] Updated weights for policy 0, policy_version 310 (0.0025)
[2024-09-21 02:10:40,974][00440] Fps is (10 sec: 3687.0, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 1273856. Throughput: 0: 905.5. Samples: 316726. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:10:40,979][00440] Avg episode reward: [(0, '13.167')]
[2024-09-21 02:10:40,993][02531] Saving new best policy, reward=13.167!
[2024-09-21 02:10:45,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3665.7). Total num frames: 1298432. Throughput: 0: 967.6. Samples: 323472. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:10:45,984][00440] Avg episode reward: [(0, '12.950')]
[2024-09-21 02:10:50,366][02544] Updated weights for policy 0, policy_version 320 (0.0032)
[2024-09-21 02:10:50,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3665.6). Total num frames: 1310720. Throughput: 0: 920.2. Samples: 327840. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:10:50,978][00440] Avg episode reward: [(0, '13.414')]
[2024-09-21 02:10:50,985][02531] Saving new best policy, reward=13.414!
[2024-09-21 02:10:55,975][00440] Fps is (10 sec: 3276.6, 60 sec: 3754.8, 300 sec: 3693.3). Total num frames: 1331200. Throughput: 0: 906.0. Samples: 330390. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:10:55,980][00440] Avg episode reward: [(0, '14.018')]
[2024-09-21 02:10:55,992][02531] Saving new best policy, reward=14.018!
[2024-09-21 02:11:00,378][02544] Updated weights for policy 0, policy_version 330 (0.0020)
[2024-09-21 02:11:00,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3693.3). Total num frames: 1351680. Throughput: 0: 946.4. Samples: 337030. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:11:00,979][00440] Avg episode reward: [(0, '13.773')]
[2024-09-21 02:11:05,974][00440] Fps is (10 sec: 3686.6, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 1368064. Throughput: 0: 947.1. Samples: 342408. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:11:05,982][00440] Avg episode reward: [(0, '14.037')]
[2024-09-21 02:11:05,996][02531] Saving new best policy, reward=14.037!
[2024-09-21 02:11:10,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3679.5). Total num frames: 1380352. Throughput: 0: 917.2. Samples: 344394. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:11:10,978][00440] Avg episode reward: [(0, '13.174')]
[2024-09-21 02:11:14,684][02544] Updated weights for policy 0, policy_version 340 (0.0032)
[2024-09-21 02:11:15,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3549.9, 300 sec: 3651.7). Total num frames: 1392640. Throughput: 0: 874.4. Samples: 348380. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:11:15,979][00440] Avg episode reward: [(0, '13.410')]
[2024-09-21 02:11:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3651.7). Total num frames: 1413120. Throughput: 0: 902.2. Samples: 353864. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:11:20,980][00440] Avg episode reward: [(0, '12.682')]
[2024-09-21 02:11:25,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3665.6). Total num frames: 1429504. Throughput: 0: 869.5. Samples: 355854. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:11:25,979][00440] Avg episode reward: [(0, '11.757')]
[2024-09-21 02:11:27,041][02544] Updated weights for policy 0, policy_version 350 (0.0030)
[2024-09-21 02:11:30,976][00440] Fps is (10 sec: 3685.6, 60 sec: 3549.8, 300 sec: 3651.7). Total num frames: 1449984. Throughput: 0: 835.1. Samples: 361052. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:11:30,979][00440] Avg episode reward: [(0, '12.320')]
[2024-09-21 02:11:35,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 1470464. Throughput: 0: 889.2. Samples: 367852. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:11:35,976][00440] Avg episode reward: [(0, '11.941')]
[2024-09-21 02:11:36,209][02544] Updated weights for policy 0, policy_version 360 (0.0039)
[2024-09-21 02:11:40,975][00440] Fps is (10 sec: 3686.8, 60 sec: 3549.8, 300 sec: 3665.6). Total num frames: 1486848. Throughput: 0: 894.2. Samples: 370630. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:11:40,978][00440] Avg episode reward: [(0, '12.704')]
[2024-09-21 02:11:45,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3651.7). Total num frames: 1503232. Throughput: 0: 839.0. Samples: 374784. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:11:45,977][00440] Avg episode reward: [(0, '13.319')]
[2024-09-21 02:11:48,103][02544] Updated weights for policy 0, policy_version 370 (0.0035)
[2024-09-21 02:11:50,974][00440] Fps is (10 sec: 4096.5, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 1527808. Throughput: 0: 871.2. Samples: 381614. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:11:50,981][00440] Avg episode reward: [(0, '13.879')]
[2024-09-21 02:11:55,976][00440] Fps is (10 sec: 4095.5, 60 sec: 3549.8, 300 sec: 3651.7). Total num frames: 1544192. Throughput: 0: 902.8. Samples: 385020. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:11:55,981][00440] Avg episode reward: [(0, '14.205')]
[2024-09-21 02:11:55,990][02531] Saving new best policy, reward=14.205!
[2024-09-21 02:11:59,398][02544] Updated weights for policy 0, policy_version 380 (0.0016)
[2024-09-21 02:12:00,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 3665.6). Total num frames: 1560576. Throughput: 0: 912.7. Samples: 389450. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:12:00,977][00440] Avg episode reward: [(0, '13.677')]
[2024-09-21 02:12:05,974][00440] Fps is (10 sec: 3686.9, 60 sec: 3549.9, 300 sec: 3651.7). Total num frames: 1581056. Throughput: 0: 918.6. Samples: 395200. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:12:05,977][00440] Avg episode reward: [(0, '15.059')]
[2024-09-21 02:12:05,987][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000386_1581056.pth...
[2024-09-21 02:12:06,116][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000174_712704.pth
[2024-09-21 02:12:06,135][02531] Saving new best policy, reward=15.059!
[2024-09-21 02:12:09,359][02544] Updated weights for policy 0, policy_version 390 (0.0033)
[2024-09-21 02:12:10,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1601536. Throughput: 0: 945.7. Samples: 398410. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:12:10,979][00440] Avg episode reward: [(0, '15.208')]
[2024-09-21 02:12:10,984][02531] Saving new best policy, reward=15.208!
[2024-09-21 02:12:15,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3665.6). Total num frames: 1617920. Throughput: 0: 952.8. Samples: 403924. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:12:15,976][00440] Avg episode reward: [(0, '15.769')]
[2024-09-21 02:12:15,989][02531] Saving new best policy, reward=15.769!
[2024-09-21 02:12:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1634304. Throughput: 0: 902.0. Samples: 408444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:12:20,981][00440] Avg episode reward: [(0, '16.251')]
[2024-09-21 02:12:20,986][02531] Saving new best policy, reward=16.251!
[2024-09-21 02:12:21,630][02544] Updated weights for policy 0, policy_version 400 (0.0027)
[2024-09-21 02:12:25,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 1654784. Throughput: 0: 913.7. Samples: 411744. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-09-21 02:12:25,979][00440] Avg episode reward: [(0, '15.806')]
[2024-09-21 02:12:30,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3686.5, 300 sec: 3637.8). Total num frames: 1671168. Throughput: 0: 948.0. Samples: 417444. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:12:30,978][00440] Avg episode reward: [(0, '15.725')]
[2024-09-21 02:12:33,673][02544] Updated weights for policy 0, policy_version 410 (0.0037)
[2024-09-21 02:12:35,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3637.8). Total num frames: 1683456. Throughput: 0: 886.1. Samples: 421490. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:12:35,977][00440] Avg episode reward: [(0, '15.780')]
[2024-09-21 02:12:40,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3686.5, 300 sec: 3637.8). Total num frames: 1708032. Throughput: 0: 875.0. Samples: 424396. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:12:40,977][00440] Avg episode reward: [(0, '15.347')]
[2024-09-21 02:12:43,588][02544] Updated weights for policy 0, policy_version 420 (0.0028)
[2024-09-21 02:12:45,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 1728512. Throughput: 0: 928.3. Samples: 431224. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:12:45,983][00440] Avg episode reward: [(0, '15.450')]
[2024-09-21 02:12:50,978][00440] Fps is (10 sec: 3684.9, 60 sec: 3617.9, 300 sec: 3651.6). Total num frames: 1744896. Throughput: 0: 913.1. Samples: 436292. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:12:50,981][00440] Avg episode reward: [(0, '15.327')]
[2024-09-21 02:12:55,365][02544] Updated weights for policy 0, policy_version 430 (0.0043)
[2024-09-21 02:12:55,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.2, 300 sec: 3637.8). Total num frames: 1761280. Throughput: 0: 887.4. Samples: 438344. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:12:55,977][00440] Avg episode reward: [(0, '13.957')]
[2024-09-21 02:13:00,974][00440] Fps is (10 sec: 3687.9, 60 sec: 3686.4, 300 sec: 3623.9). Total num frames: 1781760. Throughput: 0: 912.0. Samples: 444964. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:00,980][00440] Avg episode reward: [(0, '13.914')]
[2024-09-21 02:13:05,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3637.8). Total num frames: 1798144. Throughput: 0: 941.9. Samples: 450828. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:05,979][00440] Avg episode reward: [(0, '13.874')]
[2024-09-21 02:13:06,038][02544] Updated weights for policy 0, policy_version 440 (0.0066)
[2024-09-21 02:13:10,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3413.3, 300 sec: 3610.0). Total num frames: 1806336. Throughput: 0: 883.6. Samples: 451506. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:13:10,979][00440] Avg episode reward: [(0, '14.056')]
[2024-09-21 02:13:15,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3596.1). Total num frames: 1826816. Throughput: 0: 850.1. Samples: 455700. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:15,979][00440] Avg episode reward: [(0, '15.164')]
[2024-09-21 02:13:19,264][02544] Updated weights for policy 0, policy_version 450 (0.0044)
[2024-09-21 02:13:20,978][00440] Fps is (10 sec: 4094.4, 60 sec: 3549.6, 300 sec: 3596.2). Total num frames: 1847296. Throughput: 0: 907.9. Samples: 462348. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:13:20,984][00440] Avg episode reward: [(0, '17.365')]
[2024-09-21 02:13:20,987][02531] Saving new best policy, reward=17.365!
[2024-09-21 02:13:25,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3596.2). Total num frames: 1859584. Throughput: 0: 889.9. Samples: 464440. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:13:25,981][00440] Avg episode reward: [(0, '18.049')]
[2024-09-21 02:13:26,016][02531] Saving new best policy, reward=18.049!
[2024-09-21 02:13:30,974][00440] Fps is (10 sec: 3278.1, 60 sec: 3481.6, 300 sec: 3623.9). Total num frames: 1880064. Throughput: 0: 843.5. Samples: 469182. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:30,979][00440] Avg episode reward: [(0, '18.554')]
[2024-09-21 02:13:30,983][02531] Saving new best policy, reward=18.554!
[2024-09-21 02:13:31,300][02544] Updated weights for policy 0, policy_version 460 (0.0020)
[2024-09-21 02:13:35,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1904640. Throughput: 0: 879.6. Samples: 475872. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:35,977][00440] Avg episode reward: [(0, '18.010')]
[2024-09-21 02:13:40,974][00440] Fps is (10 sec: 4095.9, 60 sec: 3549.9, 300 sec: 3637.9). Total num frames: 1921024. Throughput: 0: 905.6. Samples: 479098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:40,977][00440] Avg episode reward: [(0, '16.637')]
[2024-09-21 02:13:42,904][02544] Updated weights for policy 0, policy_version 470 (0.0026)
[2024-09-21 02:13:45,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3637.8). Total num frames: 1933312. Throughput: 0: 836.0. Samples: 482582. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:13:45,977][00440] Avg episode reward: [(0, '16.572')]
[2024-09-21 02:13:50,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3345.3, 300 sec: 3596.1). Total num frames: 1945600. Throughput: 0: 805.2. Samples: 487062. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:13:50,979][00440] Avg episode reward: [(0, '17.587')]
[2024-09-21 02:13:55,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3582.3). Total num frames: 1961984. Throughput: 0: 829.3. Samples: 488826. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:13:55,979][00440] Avg episode reward: [(0, '18.221')]
[2024-09-21 02:13:56,689][02544] Updated weights for policy 0, policy_version 480 (0.0039)
[2024-09-21 02:14:00,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3208.5, 300 sec: 3582.3). Total num frames: 1974272. Throughput: 0: 844.2. Samples: 493690. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:00,977][00440] Avg episode reward: [(0, '18.335')]
[2024-09-21 02:14:05,975][00440] Fps is (10 sec: 3276.7, 60 sec: 3276.8, 300 sec: 3582.3). Total num frames: 1994752. Throughput: 0: 817.4. Samples: 499130. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:05,977][00440] Avg episode reward: [(0, '20.019')]
[2024-09-21 02:14:05,987][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000487_1994752.pth...
[2024-09-21 02:14:06,159][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000280_1146880.pth
[2024-09-21 02:14:06,178][02531] Saving new best policy, reward=20.019!
[2024-09-21 02:14:08,533][02544] Updated weights for policy 0, policy_version 490 (0.0034)
[2024-09-21 02:14:10,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 3582.3). Total num frames: 2015232. Throughput: 0: 834.7. Samples: 502002. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:10,981][00440] Avg episode reward: [(0, '20.192')]
[2024-09-21 02:14:10,985][02531] Saving new best policy, reward=20.192!
[2024-09-21 02:14:15,974][00440] Fps is (10 sec: 3686.5, 60 sec: 3413.3, 300 sec: 3582.3). Total num frames: 2031616. Throughput: 0: 857.2. Samples: 507754. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:14:15,979][00440] Avg episode reward: [(0, '19.122')]
[2024-09-21 02:14:20,393][02544] Updated weights for policy 0, policy_version 500 (0.0031)
[2024-09-21 02:14:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3345.3, 300 sec: 3582.3). Total num frames: 2048000. Throughput: 0: 805.2. Samples: 512104. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:20,977][00440] Avg episode reward: [(0, '19.059')]
[2024-09-21 02:14:25,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3582.3). Total num frames: 2072576. Throughput: 0: 810.6. Samples: 515576. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:25,977][00440] Avg episode reward: [(0, '17.862')]
[2024-09-21 02:14:29,412][02544] Updated weights for policy 0, policy_version 510 (0.0046)
[2024-09-21 02:14:30,978][00440] Fps is (10 sec: 4503.7, 60 sec: 3549.6, 300 sec: 3582.2). Total num frames: 2093056. Throughput: 0: 887.4. Samples: 522518. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:14:30,981][00440] Avg episode reward: [(0, '17.258')]
[2024-09-21 02:14:35,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3345.1, 300 sec: 3582.3). Total num frames: 2105344. Throughput: 0: 882.4. Samples: 526772. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:14:35,977][00440] Avg episode reward: [(0, '17.281')]
[2024-09-21 02:14:40,974][00440] Fps is (10 sec: 3278.1, 60 sec: 3413.3, 300 sec: 3582.3). Total num frames: 2125824. Throughput: 0: 900.8. Samples: 529362. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:14:40,977][00440] Avg episode reward: [(0, '17.801')]
[2024-09-21 02:14:41,320][02544] Updated weights for policy 0, policy_version 520 (0.0034)
[2024-09-21 02:14:45,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3582.3). Total num frames: 2150400. Throughput: 0: 944.4. Samples: 536190. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:14:45,977][00440] Avg episode reward: [(0, '17.578')]
[2024-09-21 02:14:50,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3596.2). Total num frames: 2166784. Throughput: 0: 943.6. Samples: 541592. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:14:50,978][00440] Avg episode reward: [(0, '18.040')]
[2024-09-21 02:14:53,109][02544] Updated weights for policy 0, policy_version 530 (0.0037)
[2024-09-21 02:14:55,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3582.3). Total num frames: 2179072. Throughput: 0: 916.4. Samples: 543238. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:14:55,980][00440] Avg episode reward: [(0, '19.187')]
[2024-09-21 02:15:00,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3582.3). Total num frames: 2203648. Throughput: 0: 933.6. Samples: 549764. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:15:00,977][00440] Avg episode reward: [(0, '20.224')]
[2024-09-21 02:15:00,979][02531] Saving new best policy, reward=20.224!
[2024-09-21 02:15:02,572][02544] Updated weights for policy 0, policy_version 540 (0.0022)
[2024-09-21 02:15:05,975][00440] Fps is (10 sec: 4095.5, 60 sec: 3754.6, 300 sec: 3568.4). Total num frames: 2220032. Throughput: 0: 972.7. Samples: 555878. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:05,981][00440] Avg episode reward: [(0, '18.933')]
[2024-09-21 02:15:10,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3582.3). Total num frames: 2236416. Throughput: 0: 940.4. Samples: 557894. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:10,977][00440] Avg episode reward: [(0, '19.335')]
[2024-09-21 02:15:14,857][02544] Updated weights for policy 0, policy_version 550 (0.0037)
[2024-09-21 02:15:15,974][00440] Fps is (10 sec: 3686.8, 60 sec: 3754.7, 300 sec: 3582.3). Total num frames: 2256896. Throughput: 0: 893.7. Samples: 562730. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:15:15,980][00440] Avg episode reward: [(0, '18.185')]
[2024-09-21 02:15:20,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3582.3). Total num frames: 2277376. Throughput: 0: 954.0. Samples: 569700. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:15:20,976][00440] Avg episode reward: [(0, '18.085')]
[2024-09-21 02:15:25,829][02544] Updated weights for policy 0, policy_version 560 (0.0029)
[2024-09-21 02:15:25,974][00440] Fps is (10 sec: 3686.5, 60 sec: 3686.4, 300 sec: 3582.3). Total num frames: 2293760. Throughput: 0: 952.9. Samples: 572244. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:15:25,979][00440] Avg episode reward: [(0, '18.382')]
[2024-09-21 02:15:30,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.4, 300 sec: 3582.3). Total num frames: 2310144. Throughput: 0: 895.0. Samples: 576464. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:30,984][00440] Avg episode reward: [(0, '18.025')]
[2024-09-21 02:15:35,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3582.3). Total num frames: 2330624. Throughput: 0: 915.3. Samples: 582780. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:35,981][00440] Avg episode reward: [(0, '17.899')]
[2024-09-21 02:15:36,396][02544] Updated weights for policy 0, policy_version 570 (0.0028)
[2024-09-21 02:15:40,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3568.4). Total num frames: 2351104. Throughput: 0: 954.9. Samples: 586208. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:40,980][00440] Avg episode reward: [(0, '18.003')]
[2024-09-21 02:15:45,977][00440] Fps is (10 sec: 3276.0, 60 sec: 3549.7, 300 sec: 3568.4). Total num frames: 2363392. Throughput: 0: 906.4. Samples: 590554. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:15:45,981][00440] Avg episode reward: [(0, '16.968')]
[2024-09-21 02:15:48,283][02544] Updated weights for policy 0, policy_version 580 (0.0043)
[2024-09-21 02:15:50,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3582.3). Total num frames: 2387968. Throughput: 0: 903.2. Samples: 596520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:15:50,983][00440] Avg episode reward: [(0, '18.242')]
[2024-09-21 02:15:55,974][00440] Fps is (10 sec: 4506.7, 60 sec: 3822.9, 300 sec: 3582.3). Total num frames: 2408448. Throughput: 0: 934.3. Samples: 599938. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:15:55,981][00440] Avg episode reward: [(0, '19.562')]
[2024-09-21 02:15:57,540][02544] Updated weights for policy 0, policy_version 590 (0.0040)
[2024-09-21 02:16:00,976][00440] Fps is (10 sec: 3685.6, 60 sec: 3686.3, 300 sec: 3582.2). Total num frames: 2424832. Throughput: 0: 949.3. Samples: 605450. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:16:00,978][00440] Avg episode reward: [(0, '19.638')]
[2024-09-21 02:16:05,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.2, 300 sec: 3582.3). Total num frames: 2437120. Throughput: 0: 893.9. Samples: 609924. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:16:05,976][00440] Avg episode reward: [(0, '19.951')]
[2024-09-21 02:16:05,990][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000595_2437120.pth...
[2024-09-21 02:16:06,262][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000386_1581056.pth
[2024-09-21 02:16:10,079][02544] Updated weights for policy 0, policy_version 600 (0.0043)
[2024-09-21 02:16:10,974][00440] Fps is (10 sec: 3277.5, 60 sec: 3686.4, 300 sec: 3610.0). Total num frames: 2457600. Throughput: 0: 895.7. Samples: 612552. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:16:10,979][00440] Avg episode reward: [(0, '19.702')]
[2024-09-21 02:16:15,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3610.0). Total num frames: 2478080. Throughput: 0: 948.1. Samples: 619128. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:16:15,977][00440] Avg episode reward: [(0, '18.803')]
[2024-09-21 02:16:20,974][00440] Fps is (10 sec: 3276.7, 60 sec: 3549.9, 300 sec: 3596.1). Total num frames: 2490368. Throughput: 0: 896.9. Samples: 623140. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:16:20,977][00440] Avg episode reward: [(0, '19.021')]
[2024-09-21 02:16:22,263][02544] Updated weights for policy 0, policy_version 610 (0.0025)
[2024-09-21 02:16:25,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3596.2). Total num frames: 2510848. Throughput: 0: 886.8. Samples: 626112. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:16:25,977][00440] Avg episode reward: [(0, '18.157')]
[2024-09-21 02:16:30,978][00440] Fps is (10 sec: 3275.7, 60 sec: 3549.7, 300 sec: 3568.3). Total num frames: 2523136. Throughput: 0: 883.7. Samples: 630322. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:16:30,985][00440] Avg episode reward: [(0, '18.844')]
[2024-09-21 02:16:35,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3413.3, 300 sec: 3554.5). Total num frames: 2535424. Throughput: 0: 838.0. Samples: 634232. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:16:35,977][00440] Avg episode reward: [(0, '19.577')]
[2024-09-21 02:16:36,931][02544] Updated weights for policy 0, policy_version 620 (0.0028)
[2024-09-21 02:16:40,974][00440] Fps is (10 sec: 2868.2, 60 sec: 3345.1, 300 sec: 3554.5). Total num frames: 2551808. Throughput: 0: 806.9. Samples: 636248. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:16:40,982][00440] Avg episode reward: [(0, '20.567')]
[2024-09-21 02:16:40,984][02531] Saving new best policy, reward=20.567!
[2024-09-21 02:16:45,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3550.0, 300 sec: 3554.5). Total num frames: 2576384. Throughput: 0: 823.9. Samples: 642526. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:16:45,976][00440] Avg episode reward: [(0, '20.837')]
[2024-09-21 02:16:45,998][02531] Saving new best policy, reward=20.837!
[2024-09-21 02:16:46,874][02544] Updated weights for policy 0, policy_version 630 (0.0037)
[2024-09-21 02:16:50,975][00440] Fps is (10 sec: 4095.8, 60 sec: 3413.3, 300 sec: 3554.5). Total num frames: 2592768. Throughput: 0: 864.8. Samples: 648840. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:16:50,978][00440] Avg episode reward: [(0, '21.057')]
[2024-09-21 02:16:50,980][02531] Saving new best policy, reward=21.057!
[2024-09-21 02:16:55,976][00440] Fps is (10 sec: 3276.1, 60 sec: 3344.9, 300 sec: 3554.5). Total num frames: 2609152. Throughput: 0: 848.9. Samples: 650754. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:16:55,983][00440] Avg episode reward: [(0, '21.820')]
[2024-09-21 02:16:55,997][02531] Saving new best policy, reward=21.820!
[2024-09-21 02:16:58,960][02544] Updated weights for policy 0, policy_version 640 (0.0026)
[2024-09-21 02:17:00,974][00440] Fps is (10 sec: 3686.6, 60 sec: 3413.4, 300 sec: 3554.5). Total num frames: 2629632. Throughput: 0: 817.9. Samples: 655932. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:17:00,976][00440] Avg episode reward: [(0, '20.344')]
[2024-09-21 02:17:05,974][00440] Fps is (10 sec: 4096.9, 60 sec: 3549.9, 300 sec: 3554.5). Total num frames: 2650112. Throughput: 0: 877.6. Samples: 662630. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:17:05,980][00440] Avg episode reward: [(0, '19.757')]
[2024-09-21 02:17:09,075][02544] Updated weights for policy 0, policy_version 650 (0.0020)
[2024-09-21 02:17:10,975][00440] Fps is (10 sec: 3686.0, 60 sec: 3481.5, 300 sec: 3554.5). Total num frames: 2666496. Throughput: 0: 874.2. Samples: 665454. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:10,982][00440] Avg episode reward: [(0, '19.620')]
[2024-09-21 02:17:15,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3554.5). Total num frames: 2682880. Throughput: 0: 874.6. Samples: 669676. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:15,977][00440] Avg episode reward: [(0, '18.914')]
[2024-09-21 02:17:19,837][02544] Updated weights for policy 0, policy_version 660 (0.0036)
[2024-09-21 02:17:20,974][00440] Fps is (10 sec: 4096.4, 60 sec: 3618.1, 300 sec: 3568.4). Total num frames: 2707456. Throughput: 0: 940.8. Samples: 676566. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:17:20,980][00440] Avg episode reward: [(0, '19.162')]
[2024-09-21 02:17:25,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3568.4). Total num frames: 2723840. Throughput: 0: 972.8. Samples: 680024. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:17:25,977][00440] Avg episode reward: [(0, '20.514')]
[2024-09-21 02:17:30,976][00440] Fps is (10 sec: 3276.1, 60 sec: 3618.2, 300 sec: 3582.2). Total num frames: 2740224. Throughput: 0: 932.7. Samples: 684500. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:30,981][00440] Avg episode reward: [(0, '20.925')]
[2024-09-21 02:17:31,717][02544] Updated weights for policy 0, policy_version 670 (0.0038)
[2024-09-21 02:17:35,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3568.4). Total num frames: 2760704. Throughput: 0: 920.9. Samples: 690278. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:35,976][00440] Avg episode reward: [(0, '22.270')]
[2024-09-21 02:17:35,987][02531] Saving new best policy, reward=22.270!
[2024-09-21 02:17:40,974][00440] Fps is (10 sec: 4096.8, 60 sec: 3822.9, 300 sec: 3568.4). Total num frames: 2781184. Throughput: 0: 953.3. Samples: 693650. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:40,980][00440] Avg episode reward: [(0, '22.585')]
[2024-09-21 02:17:40,984][02531] Saving new best policy, reward=22.585!
[2024-09-21 02:17:40,995][02544] Updated weights for policy 0, policy_version 680 (0.0032)
[2024-09-21 02:17:45,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3568.4). Total num frames: 2797568. Throughput: 0: 958.4. Samples: 699060. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:17:45,981][00440] Avg episode reward: [(0, '22.546')]
[2024-09-21 02:17:50,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3568.4). Total num frames: 2813952. Throughput: 0: 916.8. Samples: 703888. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:17:50,981][00440] Avg episode reward: [(0, '21.300')]
[2024-09-21 02:17:53,227][02544] Updated weights for policy 0, policy_version 690 (0.0016)
[2024-09-21 02:17:55,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3823.1, 300 sec: 3582.3). Total num frames: 2838528. Throughput: 0: 923.1. Samples: 706992. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:17:55,981][00440] Avg episode reward: [(0, '20.248')]
[2024-09-21 02:18:00,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3582.3). Total num frames: 2854912. Throughput: 0: 976.5. Samples: 713620. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:18:00,982][00440] Avg episode reward: [(0, '19.854')]
[2024-09-21 02:18:04,537][02544] Updated weights for policy 0, policy_version 700 (0.0020)
[2024-09-21 02:18:05,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3610.0). Total num frames: 2871296. Throughput: 0: 913.6. Samples: 717678. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:18:05,977][00440] Avg episode reward: [(0, '19.811')]
[2024-09-21 02:18:05,992][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000701_2871296.pth...
[2024-09-21 02:18:06,165][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000487_1994752.pth
[2024-09-21 02:18:10,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3610.0). Total num frames: 2891776. Throughput: 0: 900.1. Samples: 720530. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:18:10,980][00440] Avg episode reward: [(0, '19.445')]
[2024-09-21 02:18:14,157][02544] Updated weights for policy 0, policy_version 710 (0.0036)
[2024-09-21 02:18:15,974][00440] Fps is (10 sec: 4096.1, 60 sec: 3822.9, 300 sec: 3610.1). Total num frames: 2912256. Throughput: 0: 951.6. Samples: 727322. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:18:15,977][00440] Avg episode reward: [(0, '21.258')]
[2024-09-21 02:18:20,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3610.0). Total num frames: 2924544. Throughput: 0: 921.7. Samples: 731754. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:18:20,980][00440] Avg episode reward: [(0, '22.160')]
[2024-09-21 02:18:25,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3610.0). Total num frames: 2945024. Throughput: 0: 893.3. Samples: 733850. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-09-21 02:18:25,979][00440] Avg episode reward: [(0, '21.556')]
[2024-09-21 02:18:26,477][02544] Updated weights for policy 0, policy_version 720 (0.0034)
[2024-09-21 02:18:30,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3823.1, 300 sec: 3610.0). Total num frames: 2969600. Throughput: 0: 925.1. Samples: 740688. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:18:30,982][00440] Avg episode reward: [(0, '23.018')]
[2024-09-21 02:18:30,985][02531] Saving new best policy, reward=23.018!
[2024-09-21 02:18:35,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3610.0). Total num frames: 2985984. Throughput: 0: 947.8. Samples: 746538. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:18:35,979][00440] Avg episode reward: [(0, '22.082')]
[2024-09-21 02:18:37,160][02544] Updated weights for policy 0, policy_version 730 (0.0017)
[2024-09-21 02:18:40,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3610.0). Total num frames: 2998272. Throughput: 0: 922.7. Samples: 748514. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:18:40,977][00440] Avg episode reward: [(0, '20.822')]
[2024-09-21 02:18:45,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3651.7). Total num frames: 3022848. Throughput: 0: 905.9. Samples: 754386. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:18:45,979][00440] Avg episode reward: [(0, '19.101')]
[2024-09-21 02:18:47,259][02544] Updated weights for policy 0, policy_version 740 (0.0018)
[2024-09-21 02:18:50,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3665.6). Total num frames: 3043328. Throughput: 0: 969.2. Samples: 761290. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:18:50,977][00440] Avg episode reward: [(0, '17.466')]
[2024-09-21 02:18:55,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 3059712. Throughput: 0: 954.2. Samples: 763468. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-09-21 02:18:55,982][00440] Avg episode reward: [(0, '16.425')]
[2024-09-21 02:18:59,056][02544] Updated weights for policy 0, policy_version 750 (0.0036)
[2024-09-21 02:19:00,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3679.5). Total num frames: 3080192. Throughput: 0: 911.7. Samples: 768350. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:19:00,976][00440] Avg episode reward: [(0, '17.295')]
[2024-09-21 02:19:05,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3665.6). Total num frames: 3096576. Throughput: 0: 936.8. Samples: 773912. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:19:05,976][00440] Avg episode reward: [(0, '16.525')]
[2024-09-21 02:19:10,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3549.9, 300 sec: 3637.8). Total num frames: 3104768. Throughput: 0: 933.0. Samples: 775836. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2024-09-21 02:19:10,979][00440] Avg episode reward: [(0, '17.562')]
[2024-09-21 02:19:12,727][02544] Updated weights for policy 0, policy_version 760 (0.0027)
[2024-09-21 02:19:15,974][00440] Fps is (10 sec: 2457.6, 60 sec: 3481.6, 300 sec: 3637.8). Total num frames: 3121152. Throughput: 0: 863.3. Samples: 779536. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:19:15,983][00440] Avg episode reward: [(0, '17.955')]
[2024-09-21 02:19:20,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3623.9). Total num frames: 3141632. Throughput: 0: 869.2. Samples: 785652. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:19:20,979][00440] Avg episode reward: [(0, '17.858')]
[2024-09-21 02:19:23,127][02544] Updated weights for policy 0, policy_version 770 (0.0047)
[2024-09-21 02:19:25,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3637.9). Total num frames: 3166208. Throughput: 0: 901.2. Samples: 789068. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:19:25,981][00440] Avg episode reward: [(0, '18.570')]
[2024-09-21 02:19:30,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3637.8). Total num frames: 3178496. Throughput: 0: 888.3. Samples: 794358. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:19:30,978][00440] Avg episode reward: [(0, '19.533')]
[2024-09-21 02:19:35,183][02544] Updated weights for policy 0, policy_version 780 (0.0026)
[2024-09-21 02:19:35,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3623.9). Total num frames: 3194880. Throughput: 0: 842.9. Samples: 799220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:19:35,982][00440] Avg episode reward: [(0, '19.831')]
[2024-09-21 02:19:40,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3623.9). Total num frames: 3219456. Throughput: 0: 868.8. Samples: 802566. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:19:40,977][00440] Avg episode reward: [(0, '19.032')]
[2024-09-21 02:19:44,756][02544] Updated weights for policy 0, policy_version 790 (0.0026)
[2024-09-21 02:19:45,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3623.9). Total num frames: 3235840. Throughput: 0: 904.0. Samples: 809028. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:19:45,977][00440] Avg episode reward: [(0, '19.474')]
[2024-09-21 02:19:50,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 3637.8). Total num frames: 3252224. Throughput: 0: 871.5. Samples: 813130. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:19:50,982][00440] Avg episode reward: [(0, '19.429')]
[2024-09-21 02:19:55,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3623.9). Total num frames: 3272704. Throughput: 0: 901.6. Samples: 816406. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:19:55,976][00440] Avg episode reward: [(0, '19.050')]
[2024-09-21 02:19:55,993][02544] Updated weights for policy 0, policy_version 800 (0.0031)
[2024-09-21 02:20:00,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 3297280. Throughput: 0: 969.9. Samples: 823180. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:20:00,978][00440] Avg episode reward: [(0, '18.935')]
[2024-09-21 02:20:05,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3637.8). Total num frames: 3309568. Throughput: 0: 939.6. Samples: 827936. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:20:05,980][00440] Avg episode reward: [(0, '20.433')]
[2024-09-21 02:20:05,995][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000808_3309568.pth...
[2024-09-21 02:20:06,166][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000595_2437120.pth
[2024-09-21 02:20:07,944][02544] Updated weights for policy 0, policy_version 810 (0.0040)
[2024-09-21 02:20:10,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 3330048. Throughput: 0: 907.8. Samples: 829918. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:20:10,979][00440] Avg episode reward: [(0, '21.105')]
[2024-09-21 02:20:15,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3637.8). Total num frames: 3350528. Throughput: 0: 941.1. Samples: 836706. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:20:15,981][00440] Avg episode reward: [(0, '21.310')]
[2024-09-21 02:20:17,096][02544] Updated weights for policy 0, policy_version 820 (0.0038)
[2024-09-21 02:20:20,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 3366912. Throughput: 0: 965.4. Samples: 842664. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:20:20,981][00440] Avg episode reward: [(0, '21.935')]
[2024-09-21 02:20:25,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3637.8). Total num frames: 3383296. Throughput: 0: 935.5. Samples: 844662. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:20:25,977][00440] Avg episode reward: [(0, '21.306')]
[2024-09-21 02:20:28,938][02544] Updated weights for policy 0, policy_version 830 (0.0041)
[2024-09-21 02:20:30,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3651.7). Total num frames: 3407872. Throughput: 0: 922.6. Samples: 850544. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:20:30,977][00440] Avg episode reward: [(0, '19.835')]
[2024-09-21 02:20:35,974][00440] Fps is (10 sec: 4505.5, 60 sec: 3891.2, 300 sec: 3651.7). Total num frames: 3428352. Throughput: 0: 983.3. Samples: 857378. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:20:35,979][00440] Avg episode reward: [(0, '21.090')]
[2024-09-21 02:20:39,797][02544] Updated weights for policy 0, policy_version 840 (0.0034)
[2024-09-21 02:20:40,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 3440640. Throughput: 0: 958.1. Samples: 859522. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:20:40,980][00440] Avg episode reward: [(0, '20.332')]
[2024-09-21 02:20:45,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3637.8). Total num frames: 3461120. Throughput: 0: 910.7. Samples: 864160. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:20:45,983][00440] Avg episode reward: [(0, '19.606')]
[2024-09-21 02:20:50,019][02544] Updated weights for policy 0, policy_version 850 (0.0028)
[2024-09-21 02:20:50,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3651.7). Total num frames: 3485696. Throughput: 0: 957.5. Samples: 871024. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:20:50,981][00440] Avg episode reward: [(0, '20.129')]
[2024-09-21 02:20:55,975][00440] Fps is (10 sec: 4095.7, 60 sec: 3822.9, 300 sec: 3651.7). Total num frames: 3502080. Throughput: 0: 987.4. Samples: 874352. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:20:55,981][00440] Avg episode reward: [(0, '20.388')]
[2024-09-21 02:21:00,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 3518464. Throughput: 0: 928.5. Samples: 878490. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-21 02:21:00,979][00440] Avg episode reward: [(0, '19.639')]
[2024-09-21 02:21:01,831][02544] Updated weights for policy 0, policy_version 860 (0.0028)
[2024-09-21 02:21:05,974][00440] Fps is (10 sec: 3686.8, 60 sec: 3822.9, 300 sec: 3665.6). Total num frames: 3538944. Throughput: 0: 939.7. Samples: 884950. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:21:05,984][00440] Avg episode reward: [(0, '20.972')]
[2024-09-21 02:21:10,979][00440] Fps is (10 sec: 4093.9, 60 sec: 3822.6, 300 sec: 3665.5). Total num frames: 3559424. Throughput: 0: 967.4. Samples: 888198. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:21:10,982][00440] Avg episode reward: [(0, '21.905')]
[2024-09-21 02:21:11,424][02544] Updated weights for policy 0, policy_version 870 (0.0016)
[2024-09-21 02:21:15,978][00440] Fps is (10 sec: 3684.9, 60 sec: 3754.4, 300 sec: 3679.4). Total num frames: 3575808. Throughput: 0: 947.2. Samples: 893172. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:21:15,981][00440] Avg episode reward: [(0, '21.219')]
[2024-09-21 02:21:20,974][00440] Fps is (10 sec: 3688.3, 60 sec: 3822.9, 300 sec: 3679.5). Total num frames: 3596288. Throughput: 0: 916.1. Samples: 898604. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:21:20,977][00440] Avg episode reward: [(0, '21.033')]
[2024-09-21 02:21:22,750][02544] Updated weights for policy 0, policy_version 880 (0.0035)
[2024-09-21 02:21:25,974][00440] Fps is (10 sec: 4097.7, 60 sec: 3891.2, 300 sec: 3707.3). Total num frames: 3616768. Throughput: 0: 944.2. Samples: 902012. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:21:25,976][00440] Avg episode reward: [(0, '19.827')]
[2024-09-21 02:21:30,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 3633152. Throughput: 0: 972.3. Samples: 907914. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:21:30,983][00440] Avg episode reward: [(0, '19.585')]
[2024-09-21 02:21:34,863][02544] Updated weights for policy 0, policy_version 890 (0.0041)
[2024-09-21 02:21:35,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 3649536. Throughput: 0: 915.5. Samples: 912220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:21:35,983][00440] Avg episode reward: [(0, '19.504')]
[2024-09-21 02:21:40,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3707.2). Total num frames: 3670016. Throughput: 0: 912.7. Samples: 915424. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:21:40,977][00440] Avg episode reward: [(0, '20.620')]
[2024-09-21 02:21:45,582][02544] Updated weights for policy 0, policy_version 900 (0.0022)
[2024-09-21 02:21:45,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 3686400. Throughput: 0: 947.4. Samples: 921122. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:21:45,977][00440] Avg episode reward: [(0, '20.221')]
[2024-09-21 02:21:50,977][00440] Fps is (10 sec: 2457.0, 60 sec: 3481.5, 300 sec: 3679.5). Total num frames: 3694592. Throughput: 0: 877.5. Samples: 924440. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:21:50,979][00440] Avg episode reward: [(0, '21.294')]
[2024-09-21 02:21:55,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3679.5). Total num frames: 3715072. Throughput: 0: 847.2. Samples: 926318. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:21:55,977][00440] Avg episode reward: [(0, '22.010')]
[2024-09-21 02:21:58,696][02544] Updated weights for policy 0, policy_version 910 (0.0046)
[2024-09-21 02:22:00,974][00440] Fps is (10 sec: 4097.0, 60 sec: 3618.1, 300 sec: 3679.5). Total num frames: 3735552. Throughput: 0: 878.0. Samples: 932680. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:22:00,979][00440] Avg episode reward: [(0, '22.411')]
[2024-09-21 02:22:05,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3693.4). Total num frames: 3756032. Throughput: 0: 903.4. Samples: 939258. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:22:05,981][00440] Avg episode reward: [(0, '22.022')]
[2024-09-21 02:22:05,994][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000917_3756032.pth...
[2024-09-21 02:22:06,152][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000701_2871296.pth
[2024-09-21 02:22:10,485][02544] Updated weights for policy 0, policy_version 920 (0.0041)
[2024-09-21 02:22:10,974][00440] Fps is (10 sec: 3276.7, 60 sec: 3481.9, 300 sec: 3679.5). Total num frames: 3768320. Throughput: 0: 869.2. Samples: 941126. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:22:10,977][00440] Avg episode reward: [(0, '21.894')]
[2024-09-21 02:22:15,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3550.1, 300 sec: 3665.6). Total num frames: 3788800. Throughput: 0: 853.9. Samples: 946340. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-21 02:22:15,980][00440] Avg episode reward: [(0, '23.650')]
[2024-09-21 02:22:15,991][02531] Saving new best policy, reward=23.650!
[2024-09-21 02:22:19,706][02544] Updated weights for policy 0, policy_version 930 (0.0032)
[2024-09-21 02:22:20,974][00440] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3693.3). Total num frames: 3813376. Throughput: 0: 909.2. Samples: 953132. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:22:20,981][00440] Avg episode reward: [(0, '23.272')]
[2024-09-21 02:22:25,974][00440] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3679.5). Total num frames: 3825664. Throughput: 0: 899.3. Samples: 955892. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:22:25,976][00440] Avg episode reward: [(0, '23.869')]
[2024-09-21 02:22:26,061][02531] Saving new best policy, reward=23.869!
[2024-09-21 02:22:30,974][00440] Fps is (10 sec: 3276.9, 60 sec: 3549.9, 300 sec: 3679.5). Total num frames: 3846144. Throughput: 0: 861.2. Samples: 959876. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:22:30,982][00440] Avg episode reward: [(0, '23.152')]
[2024-09-21 02:22:31,796][02544] Updated weights for policy 0, policy_version 940 (0.0017)
[2024-09-21 02:22:35,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3679.5). Total num frames: 3866624. Throughput: 0: 939.6. Samples: 966722. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:22:35,978][00440] Avg episode reward: [(0, '24.540')]
[2024-09-21 02:22:35,989][02531] Saving new best policy, reward=24.540!
[2024-09-21 02:22:40,975][00440] Fps is (10 sec: 3686.0, 60 sec: 3549.8, 300 sec: 3679.4). Total num frames: 3883008. Throughput: 0: 968.6. Samples: 969908. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:22:40,978][00440] Avg episode reward: [(0, '23.024')]
[2024-09-21 02:22:42,612][02544] Updated weights for policy 0, policy_version 950 (0.0052)
[2024-09-21 02:22:45,974][00440] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3665.6). Total num frames: 3895296. Throughput: 0: 926.5. Samples: 974372. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-21 02:22:45,982][00440] Avg episode reward: [(0, '23.233')]
[2024-09-21 02:22:50,974][00440] Fps is (10 sec: 3277.1, 60 sec: 3686.5, 300 sec: 3651.7). Total num frames: 3915776. Throughput: 0: 888.4. Samples: 979238. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-21 02:22:50,977][00440] Avg episode reward: [(0, '22.769')]
[2024-09-21 02:22:54,066][02544] Updated weights for policy 0, policy_version 960 (0.0033)
[2024-09-21 02:22:55,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 3936256. Throughput: 0: 923.1. Samples: 982666. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:22:55,982][00440] Avg episode reward: [(0, '22.652')]
[2024-09-21 02:23:00,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3651.7). Total num frames: 3948544. Throughput: 0: 908.4. Samples: 987220. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-21 02:23:00,978][00440] Avg episode reward: [(0, '23.433')]
[2024-09-21 02:23:05,974][00440] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3651.7). Total num frames: 3969024. Throughput: 0: 864.3. Samples: 992024. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-21 02:23:05,979][00440] Avg episode reward: [(0, '22.897')]
[2024-09-21 02:23:06,576][02544] Updated weights for policy 0, policy_version 970 (0.0026)
[2024-09-21 02:23:10,974][00440] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 3989504. Throughput: 0: 877.6. Samples: 995386. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-09-21 02:23:10,977][00440] Avg episode reward: [(0, '23.127')]
[2024-09-21 02:23:13,997][02531] Stopping Batcher_0...
[2024-09-21 02:23:13,998][02531] Loop batcher_evt_loop terminating...
[2024-09-21 02:23:13,998][00440] Component Batcher_0 stopped!
[2024-09-21 02:23:14,009][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-21 02:23:14,074][02544] Weights refcount: 2 0
[2024-09-21 02:23:14,079][00440] Component InferenceWorker_p0-w0 stopped!
[2024-09-21 02:23:14,086][02544] Stopping InferenceWorker_p0-w0...
[2024-09-21 02:23:14,087][02544] Loop inference_proc0-0_evt_loop terminating...
[2024-09-21 02:23:14,215][02531] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000808_3309568.pth
[2024-09-21 02:23:14,245][02531] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-21 02:23:14,485][02531] Stopping LearnerWorker_p0...
[2024-09-21 02:23:14,486][02531] Loop learner_proc0_evt_loop terminating...
[2024-09-21 02:23:14,486][00440] Component LearnerWorker_p0 stopped!
[2024-09-21 02:23:14,720][00440] Component RolloutWorker_w5 stopped!
[2024-09-21 02:23:14,720][02550] Stopping RolloutWorker_w5...
[2024-09-21 02:23:14,739][02550] Loop rollout_proc5_evt_loop terminating...
[2024-09-21 02:23:14,757][02552] Stopping RolloutWorker_w7...
[2024-09-21 02:23:14,757][02552] Loop rollout_proc7_evt_loop terminating...
[2024-09-21 02:23:14,756][00440] Component RolloutWorker_w7 stopped!
[2024-09-21 02:23:14,776][00440] Component RolloutWorker_w3 stopped!
[2024-09-21 02:23:14,778][02548] Stopping RolloutWorker_w3...
[2024-09-21 02:23:14,789][02548] Loop rollout_proc3_evt_loop terminating...
[2024-09-21 02:23:14,806][00440] Component RolloutWorker_w1 stopped!
[2024-09-21 02:23:14,808][00440] Component RolloutWorker_w4 stopped!
[2024-09-21 02:23:14,808][02549] Stopping RolloutWorker_w4...
[2024-09-21 02:23:14,812][02549] Loop rollout_proc4_evt_loop terminating...
[2024-09-21 02:23:14,811][02546] Stopping RolloutWorker_w1...
[2024-09-21 02:23:14,813][02546] Loop rollout_proc1_evt_loop terminating...
[2024-09-21 02:23:14,848][02551] Stopping RolloutWorker_w6...
[2024-09-21 02:23:14,848][00440] Component RolloutWorker_w6 stopped!
[2024-09-21 02:23:14,860][02551] Loop rollout_proc6_evt_loop terminating...
[2024-09-21 02:23:14,902][00440] Component RolloutWorker_w0 stopped!
[2024-09-21 02:23:14,903][02545] Stopping RolloutWorker_w0...
[2024-09-21 02:23:14,918][02545] Loop rollout_proc0_evt_loop terminating...
[2024-09-21 02:23:14,997][00440] Component RolloutWorker_w2 stopped!
[2024-09-21 02:23:15,003][02547] Stopping RolloutWorker_w2...
[2024-09-21 02:23:15,002][00440] Waiting for process learner_proc0 to stop...
[2024-09-21 02:23:15,014][02547] Loop rollout_proc2_evt_loop terminating...
[2024-09-21 02:23:16,621][00440] Waiting for process inference_proc0-0 to join...
[2024-09-21 02:23:16,864][00440] Waiting for process rollout_proc0 to join...
[2024-09-21 02:23:19,584][00440] Waiting for process rollout_proc1 to join...
[2024-09-21 02:23:19,587][00440] Waiting for process rollout_proc2 to join...
[2024-09-21 02:23:19,592][00440] Waiting for process rollout_proc3 to join...
[2024-09-21 02:23:19,596][00440] Waiting for process rollout_proc4 to join...
[2024-09-21 02:23:19,599][00440] Waiting for process rollout_proc5 to join...
[2024-09-21 02:23:19,602][00440] Waiting for process rollout_proc6 to join...
[2024-09-21 02:23:19,606][00440] Waiting for process rollout_proc7 to join...
[2024-09-21 02:23:19,610][00440] Batcher 0 profile tree view:
batching: 29.0248, releasing_batches: 0.0327
[2024-09-21 02:23:19,612][00440] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 407.0186
update_model: 9.8448
weight_update: 0.0034
one_step: 0.0055
handle_policy_step: 653.5996
deserialize: 15.8371, stack: 3.5892, obs_to_device_normalize: 131.7549, forward: 348.8599, send_messages: 31.2155
prepare_outputs: 90.5582
to_cpu: 51.8778
[2024-09-21 02:23:19,614][00440] Learner 0 profile tree view:
misc: 0.0062, prepare_batch: 14.4260
train: 74.0754
epoch_init: 0.0056, minibatch_init: 0.0182, losses_postprocess: 0.6605, kl_divergence: 0.7201, after_optimizer: 33.7126
calculate_losses: 26.0268
losses_init: 0.0035, forward_head: 1.2164, bptt_initial: 17.2207, tail: 1.2457, advantages_returns: 0.2597, losses: 3.6522
bptt: 2.0391
bptt_forward_core: 1.9026
update: 12.2437
clip: 0.9446
[2024-09-21 02:23:19,615][00440] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.3249, enqueue_policy_requests: 102.2515, env_step: 863.2234, overhead: 14.5644, complete_rollouts: 7.4808
save_policy_outputs: 23.3946
split_output_tensors: 9.3306
[2024-09-21 02:23:19,617][00440] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.3913, enqueue_policy_requests: 106.0330, env_step: 862.3417, overhead: 15.2255, complete_rollouts: 7.1341
save_policy_outputs: 21.6515
split_output_tensors: 9.2174
[2024-09-21 02:23:19,618][00440] Loop Runner_EvtLoop terminating...
[2024-09-21 02:23:19,620][00440] Runner profile tree view:
main_loop: 1148.2084
[2024-09-21 02:23:19,621][00440] Collected {0: 4005888}, FPS: 3488.8
[2024-09-21 02:23:26,216][00440] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-09-21 02:23:26,217][00440] Overriding arg 'num_workers' with value 1 passed from command line
[2024-09-21 02:23:26,222][00440] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-09-21 02:23:26,224][00440] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-09-21 02:23:26,225][00440] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-09-21 02:23:26,229][00440] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-09-21 02:23:26,230][00440] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2024-09-21 02:23:26,232][00440] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-09-21 02:23:26,234][00440] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2024-09-21 02:23:26,236][00440] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2024-09-21 02:23:26,238][00440] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-09-21 02:23:26,240][00440] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-09-21 02:23:26,242][00440] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-09-21 02:23:26,246][00440] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-09-21 02:23:26,249][00440] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-09-21 02:23:26,278][00440] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-21 02:23:26,282][00440] RunningMeanStd input shape: (3, 72, 128)
[2024-09-21 02:23:26,284][00440] RunningMeanStd input shape: (1,)
[2024-09-21 02:23:26,301][00440] ConvEncoder: input_channels=3
[2024-09-21 02:23:26,405][00440] Conv encoder output size: 512
[2024-09-21 02:23:26,407][00440] Policy head output size: 512
[2024-09-21 02:23:26,696][00440] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-21 02:23:27,561][00440] Num frames 100...
[2024-09-21 02:23:27,688][00440] Num frames 200...
[2024-09-21 02:23:27,819][00440] Num frames 300...
[2024-09-21 02:23:27,951][00440] Num frames 400...
[2024-09-21 02:23:28,078][00440] Num frames 500...
[2024-09-21 02:23:28,205][00440] Num frames 600...
[2024-09-21 02:23:28,329][00440] Num frames 700...
[2024-09-21 02:23:28,509][00440] Num frames 800...
[2024-09-21 02:23:28,686][00440] Num frames 900...
[2024-09-21 02:23:28,869][00440] Num frames 1000...
[2024-09-21 02:23:29,042][00440] Num frames 1100...
[2024-09-21 02:23:29,223][00440] Num frames 1200...
[2024-09-21 02:23:29,394][00440] Num frames 1300...
[2024-09-21 02:23:29,576][00440] Num frames 1400...
[2024-09-21 02:23:29,761][00440] Num frames 1500...
[2024-09-21 02:23:29,840][00440] Avg episode rewards: #0: 33.090, true rewards: #0: 15.090
[2024-09-21 02:23:29,842][00440] Avg episode reward: 33.090, avg true_objective: 15.090
[2024-09-21 02:23:30,011][00440] Num frames 1600...
[2024-09-21 02:23:30,188][00440] Num frames 1700...
[2024-09-21 02:23:30,377][00440] Num frames 1800...
[2024-09-21 02:23:30,556][00440] Num frames 1900...
[2024-09-21 02:23:30,736][00440] Num frames 2000...
[2024-09-21 02:23:30,922][00440] Num frames 2100...
[2024-09-21 02:23:31,070][00440] Num frames 2200...
[2024-09-21 02:23:31,200][00440] Num frames 2300...
[2024-09-21 02:23:31,329][00440] Num frames 2400...
[2024-09-21 02:23:31,454][00440] Num frames 2500...
[2024-09-21 02:23:31,583][00440] Num frames 2600...
[2024-09-21 02:23:31,715][00440] Num frames 2700...
[2024-09-21 02:23:31,849][00440] Num frames 2800...
[2024-09-21 02:23:31,978][00440] Num frames 2900...
[2024-09-21 02:23:32,117][00440] Num frames 3000...
[2024-09-21 02:23:32,247][00440] Num frames 3100...
[2024-09-21 02:23:32,375][00440] Num frames 3200...
[2024-09-21 02:23:32,499][00440] Num frames 3300...
[2024-09-21 02:23:32,625][00440] Avg episode rewards: #0: 38.270, true rewards: #0: 16.770
[2024-09-21 02:23:32,626][00440] Avg episode reward: 38.270, avg true_objective: 16.770
[2024-09-21 02:23:32,684][00440] Num frames 3400...
[2024-09-21 02:23:32,820][00440] Num frames 3500...
[2024-09-21 02:23:32,943][00440] Num frames 3600...
[2024-09-21 02:23:33,077][00440] Num frames 3700...
[2024-09-21 02:23:33,202][00440] Num frames 3800...
[2024-09-21 02:23:33,330][00440] Num frames 3900...
[2024-09-21 02:23:33,460][00440] Num frames 4000...
[2024-09-21 02:23:33,589][00440] Num frames 4100...
[2024-09-21 02:23:33,719][00440] Num frames 4200...
[2024-09-21 02:23:33,845][00440] Num frames 4300...
[2024-09-21 02:23:33,977][00440] Num frames 4400...
[2024-09-21 02:23:34,039][00440] Avg episode rewards: #0: 35.343, true rewards: #0: 14.677
[2024-09-21 02:23:34,041][00440] Avg episode reward: 35.343, avg true_objective: 14.677
[2024-09-21 02:23:34,176][00440] Num frames 4500...
[2024-09-21 02:23:34,301][00440] Num frames 4600...
[2024-09-21 02:23:34,427][00440] Num frames 4700...
[2024-09-21 02:23:34,556][00440] Num frames 4800...
[2024-09-21 02:23:34,714][00440] Avg episode rewards: #0: 28.458, true rewards: #0: 12.207
[2024-09-21 02:23:34,716][00440] Avg episode reward: 28.458, avg true_objective: 12.207
[2024-09-21 02:23:34,745][00440] Num frames 4900...
[2024-09-21 02:23:34,873][00440] Num frames 5000...
[2024-09-21 02:23:34,999][00440] Num frames 5100...
[2024-09-21 02:23:35,136][00440] Num frames 5200...
[2024-09-21 02:23:35,267][00440] Num frames 5300...
[2024-09-21 02:23:35,394][00440] Num frames 5400...
[2024-09-21 02:23:35,520][00440] Num frames 5500...
[2024-09-21 02:23:35,654][00440] Num frames 5600...
[2024-09-21 02:23:35,793][00440] Num frames 5700...
[2024-09-21 02:23:35,924][00440] Num frames 5800...
[2024-09-21 02:23:36,052][00440] Num frames 5900...
[2024-09-21 02:23:36,190][00440] Num frames 6000...
[2024-09-21 02:23:36,318][00440] Avg episode rewards: #0: 28.710, true rewards: #0: 12.110
[2024-09-21 02:23:36,320][00440] Avg episode reward: 28.710, avg true_objective: 12.110
[2024-09-21 02:23:36,379][00440] Num frames 6100...
[2024-09-21 02:23:36,504][00440] Num frames 6200...
[2024-09-21 02:23:36,632][00440] Num frames 6300...
[2024-09-21 02:23:36,768][00440] Num frames 6400...
[2024-09-21 02:23:36,893][00440] Num frames 6500...
[2024-09-21 02:23:37,020][00440] Num frames 6600...
[2024-09-21 02:23:37,162][00440] Num frames 6700...
[2024-09-21 02:23:37,290][00440] Num frames 6800...
[2024-09-21 02:23:37,415][00440] Num frames 6900...
[2024-09-21 02:23:37,548][00440] Num frames 7000...
[2024-09-21 02:23:37,710][00440] Num frames 7100...
[2024-09-21 02:23:37,843][00440] Num frames 7200...
[2024-09-21 02:23:37,973][00440] Num frames 7300...
[2024-09-21 02:23:38,101][00440] Num frames 7400...
[2024-09-21 02:23:38,240][00440] Num frames 7500...
[2024-09-21 02:23:38,371][00440] Num frames 7600...
[2024-09-21 02:23:38,506][00440] Num frames 7700...
[2024-09-21 02:23:38,633][00440] Num frames 7800...
[2024-09-21 02:23:38,815][00440] Avg episode rewards: #0: 32.817, true rewards: #0: 13.150
[2024-09-21 02:23:38,818][00440] Avg episode reward: 32.817, avg true_objective: 13.150
[2024-09-21 02:23:38,832][00440] Num frames 7900...
[2024-09-21 02:23:38,957][00440] Num frames 8000...
[2024-09-21 02:23:39,085][00440] Num frames 8100...
[2024-09-21 02:23:39,223][00440] Num frames 8200...
[2024-09-21 02:23:39,357][00440] Num frames 8300...
[2024-09-21 02:23:39,491][00440] Num frames 8400...
[2024-09-21 02:23:39,595][00440] Avg episode rewards: #0: 29.334, true rewards: #0: 12.049
[2024-09-21 02:23:39,597][00440] Avg episode reward: 29.334, avg true_objective: 12.049
[2024-09-21 02:23:39,679][00440] Num frames 8500...
[2024-09-21 02:23:39,832][00440] Num frames 8600...
[2024-09-21 02:23:39,958][00440] Num frames 8700...
[2024-09-21 02:23:40,086][00440] Num frames 8800...
[2024-09-21 02:23:40,223][00440] Num frames 8900...
[2024-09-21 02:23:40,352][00440] Num frames 9000...
[2024-09-21 02:23:40,478][00440] Num frames 9100...
[2024-09-21 02:23:40,607][00440] Num frames 9200...
[2024-09-21 02:23:40,739][00440] Num frames 9300...
[2024-09-21 02:23:40,833][00440] Avg episode rewards: #0: 28.411, true rewards: #0: 11.661
[2024-09-21 02:23:40,835][00440] Avg episode reward: 28.411, avg true_objective: 11.661
[2024-09-21 02:23:40,931][00440] Num frames 9400...
[2024-09-21 02:23:41,090][00440] Num frames 9500...
[2024-09-21 02:23:41,278][00440] Num frames 9600...
[2024-09-21 02:23:41,454][00440] Num frames 9700...
[2024-09-21 02:23:41,634][00440] Num frames 9800...
[2024-09-21 02:23:41,826][00440] Num frames 9900...
[2024-09-21 02:23:41,993][00440] Num frames 10000...
[2024-09-21 02:23:42,163][00440] Num frames 10100...
[2024-09-21 02:23:42,353][00440] Num frames 10200...
[2024-09-21 02:23:42,526][00440] Num frames 10300...
[2024-09-21 02:23:42,704][00440] Num frames 10400...
[2024-09-21 02:23:42,801][00440] Avg episode rewards: #0: 28.019, true rewards: #0: 11.574
[2024-09-21 02:23:42,804][00440] Avg episode reward: 28.019, avg true_objective: 11.574
[2024-09-21 02:23:42,951][00440] Num frames 10500...
[2024-09-21 02:23:43,137][00440] Num frames 10600...
[2024-09-21 02:23:43,322][00440] Num frames 10700...
[2024-09-21 02:23:43,511][00440] Num frames 10800...
[2024-09-21 02:23:43,637][00440] Num frames 10900...
[2024-09-21 02:23:43,767][00440] Num frames 11000...
[2024-09-21 02:23:43,901][00440] Num frames 11100...
[2024-09-21 02:23:44,027][00440] Num frames 11200...
[2024-09-21 02:23:44,154][00440] Num frames 11300...
[2024-09-21 02:23:44,284][00440] Num frames 11400...
[2024-09-21 02:23:44,392][00440] Avg episode rewards: #0: 27.241, true rewards: #0: 11.441
[2024-09-21 02:23:44,394][00440] Avg episode reward: 27.241, avg true_objective: 11.441
[2024-09-21 02:24:53,513][00440] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2024-09-21 02:26:56,392][00440] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-09-21 02:26:56,394][00440] Overriding arg 'num_workers' with value 1 passed from command line
[2024-09-21 02:26:56,396][00440] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-09-21 02:26:56,398][00440] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-09-21 02:26:56,401][00440] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-09-21 02:26:56,406][00440] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-09-21 02:26:56,409][00440] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2024-09-21 02:26:56,411][00440] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-09-21 02:26:56,412][00440] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2024-09-21 02:26:56,413][00440] Adding new argument 'hf_repository'='yin771/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2024-09-21 02:26:56,414][00440] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-09-21 02:26:56,415][00440] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-09-21 02:26:56,418][00440] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-09-21 02:26:56,419][00440] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-09-21 02:26:56,420][00440] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-09-21 02:26:56,474][00440] RunningMeanStd input shape: (3, 72, 128)
[2024-09-21 02:26:56,477][00440] RunningMeanStd input shape: (1,)
[2024-09-21 02:26:56,496][00440] ConvEncoder: input_channels=3
[2024-09-21 02:26:56,554][00440] Conv encoder output size: 512
[2024-09-21 02:26:56,556][00440] Policy head output size: 512
[2024-09-21 02:26:56,586][00440] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-21 02:26:57,268][00440] Num frames 100...
[2024-09-21 02:26:57,434][00440] Num frames 200...
[2024-09-21 02:26:57,622][00440] Num frames 300...
[2024-09-21 02:26:57,796][00440] Num frames 400...
[2024-09-21 02:26:57,979][00440] Num frames 500...
[2024-09-21 02:26:58,117][00440] Avg episode rewards: #0: 9.440, true rewards: #0: 5.440
[2024-09-21 02:26:58,120][00440] Avg episode reward: 9.440, avg true_objective: 5.440
[2024-09-21 02:26:58,222][00440] Num frames 600...
[2024-09-21 02:26:58,398][00440] Num frames 700...
[2024-09-21 02:26:58,591][00440] Num frames 800...
[2024-09-21 02:26:58,735][00440] Num frames 900...
[2024-09-21 02:26:58,864][00440] Num frames 1000...
[2024-09-21 02:26:58,989][00440] Num frames 1100...
[2024-09-21 02:26:59,119][00440] Num frames 1200...
[2024-09-21 02:26:59,236][00440] Avg episode rewards: #0: 11.240, true rewards: #0: 6.240
[2024-09-21 02:26:59,239][00440] Avg episode reward: 11.240, avg true_objective: 6.240
[2024-09-21 02:26:59,321][00440] Num frames 1300...
[2024-09-21 02:26:59,493][00440] Num frames 1400...
[2024-09-21 02:26:59,677][00440] Num frames 1500...
[2024-09-21 02:26:59,854][00440] Num frames 1600...
[2024-09-21 02:27:00,025][00440] Num frames 1700...
[2024-09-21 02:27:00,201][00440] Num frames 1800...
[2024-09-21 02:27:00,369][00440] Num frames 1900...
[2024-09-21 02:27:00,535][00440] Num frames 2000...
[2024-09-21 02:27:00,725][00440] Num frames 2100...
[2024-09-21 02:27:00,911][00440] Num frames 2200...
[2024-09-21 02:27:01,103][00440] Num frames 2300...
[2024-09-21 02:27:01,293][00440] Num frames 2400...
[2024-09-21 02:27:01,475][00440] Num frames 2500...
[2024-09-21 02:27:01,659][00440] Num frames 2600...
[2024-09-21 02:27:01,863][00440] Num frames 2700...
[2024-09-21 02:27:02,025][00440] Num frames 2800...
[2024-09-21 02:27:02,154][00440] Num frames 2900...
[2024-09-21 02:27:02,280][00440] Num frames 3000...
[2024-09-21 02:27:02,406][00440] Num frames 3100...
[2024-09-21 02:27:02,532][00440] Num frames 3200...
[2024-09-21 02:27:02,668][00440] Avg episode rewards: #0: 25.546, true rewards: #0: 10.880
[2024-09-21 02:27:02,670][00440] Avg episode reward: 25.546, avg true_objective: 10.880
[2024-09-21 02:27:02,722][00440] Num frames 3300...
[2024-09-21 02:27:02,858][00440] Num frames 3400...
[2024-09-21 02:27:02,982][00440] Num frames 3500...
[2024-09-21 02:27:03,108][00440] Num frames 3600...
[2024-09-21 02:27:03,238][00440] Num frames 3700...
[2024-09-21 02:27:03,361][00440] Num frames 3800...
[2024-09-21 02:27:03,466][00440] Avg episode rewards: #0: 21.600, true rewards: #0: 9.600
[2024-09-21 02:27:03,469][00440] Avg episode reward: 21.600, avg true_objective: 9.600
[2024-09-21 02:27:03,546][00440] Num frames 3900...
[2024-09-21 02:27:03,667][00440] Num frames 4000...
[2024-09-21 02:27:03,809][00440] Num frames 4100...
[2024-09-21 02:27:03,939][00440] Num frames 4200...
[2024-09-21 02:27:04,064][00440] Num frames 4300...
[2024-09-21 02:27:04,187][00440] Num frames 4400...
[2024-09-21 02:27:04,317][00440] Num frames 4500...
[2024-09-21 02:27:04,411][00440] Avg episode rewards: #0: 19.658, true rewards: #0: 9.058
[2024-09-21 02:27:04,412][00440] Avg episode reward: 19.658, avg true_objective: 9.058
[2024-09-21 02:27:04,500][00440] Num frames 4600...
[2024-09-21 02:27:04,623][00440] Num frames 4700...
[2024-09-21 02:27:04,759][00440] Num frames 4800...
[2024-09-21 02:27:04,897][00440] Num frames 4900...
[2024-09-21 02:27:05,033][00440] Num frames 5000...
[2024-09-21 02:27:05,163][00440] Num frames 5100...
[2024-09-21 02:27:05,290][00440] Num frames 5200...
[2024-09-21 02:27:05,416][00440] Num frames 5300...
[2024-09-21 02:27:05,538][00440] Num frames 5400...
[2024-09-21 02:27:05,664][00440] Num frames 5500...
[2024-09-21 02:27:05,804][00440] Num frames 5600...
[2024-09-21 02:27:05,940][00440] Num frames 5700...
[2024-09-21 02:27:06,020][00440] Avg episode rewards: #0: 20.532, true rewards: #0: 9.532
[2024-09-21 02:27:06,022][00440] Avg episode reward: 20.532, avg true_objective: 9.532
[2024-09-21 02:27:06,127][00440] Num frames 5800...
[2024-09-21 02:27:06,252][00440] Num frames 5900...
[2024-09-21 02:27:06,374][00440] Num frames 6000...
[2024-09-21 02:27:06,499][00440] Num frames 6100...
[2024-09-21 02:27:06,623][00440] Num frames 6200...
[2024-09-21 02:27:06,759][00440] Num frames 6300...
[2024-09-21 02:27:06,895][00440] Num frames 6400...
[2024-09-21 02:27:07,023][00440] Num frames 6500...
[2024-09-21 02:27:07,155][00440] Num frames 6600...
[2024-09-21 02:27:07,288][00440] Num frames 6700...
[2024-09-21 02:27:07,413][00440] Num frames 6800...
[2024-09-21 02:27:07,540][00440] Num frames 6900...
[2024-09-21 02:27:07,664][00440] Num frames 7000...
[2024-09-21 02:27:07,800][00440] Num frames 7100...
[2024-09-21 02:27:07,940][00440] Num frames 7200...
[2024-09-21 02:27:08,066][00440] Num frames 7300...
[2024-09-21 02:27:08,195][00440] Num frames 7400...
[2024-09-21 02:27:08,329][00440] Num frames 7500...
[2024-09-21 02:27:08,504][00440] Num frames 7600...
[2024-09-21 02:27:08,647][00440] Num frames 7700...
[2024-09-21 02:27:08,841][00440] Avg episode rewards: #0: 26.381, true rewards: #0: 11.096
[2024-09-21 02:27:08,844][00440] Avg episode reward: 26.381, avg true_objective: 11.096
[2024-09-21 02:27:08,911][00440] Num frames 7800...
[2024-09-21 02:27:09,088][00440] Num frames 7900...
[2024-09-21 02:27:09,262][00440] Num frames 8000...
[2024-09-21 02:27:09,432][00440] Num frames 8100...
[2024-09-21 02:27:09,605][00440] Num frames 8200...
[2024-09-21 02:27:09,785][00440] Num frames 8300...
[2024-09-21 02:27:09,967][00440] Num frames 8400...
[2024-09-21 02:27:10,178][00440] Avg episode rewards: #0: 25.214, true rewards: #0: 10.589
[2024-09-21 02:27:10,180][00440] Avg episode reward: 25.214, avg true_objective: 10.589
[2024-09-21 02:27:10,238][00440] Num frames 8500...
[2024-09-21 02:27:10,414][00440] Num frames 8600...
[2024-09-21 02:27:10,594][00440] Num frames 8700...
[2024-09-21 02:27:10,781][00440] Num frames 8800...
[2024-09-21 02:27:10,966][00440] Num frames 8900...
[2024-09-21 02:27:11,165][00440] Num frames 9000...
[2024-09-21 02:27:11,323][00440] Num frames 9100...
[2024-09-21 02:27:11,453][00440] Num frames 9200...
[2024-09-21 02:27:11,577][00440] Num frames 9300...
[2024-09-21 02:27:11,701][00440] Num frames 9400...
[2024-09-21 02:27:11,784][00440] Avg episode rewards: #0: 24.794, true rewards: #0: 10.461
[2024-09-21 02:27:11,786][00440] Avg episode reward: 24.794, avg true_objective: 10.461
[2024-09-21 02:27:11,906][00440] Num frames 9500...
[2024-09-21 02:27:12,035][00440] Num frames 9600...
[2024-09-21 02:27:12,172][00440] Num frames 9700...
[2024-09-21 02:27:12,302][00440] Num frames 9800...
[2024-09-21 02:27:12,429][00440] Num frames 9900...
[2024-09-21 02:27:12,556][00440] Num frames 10000...
[2024-09-21 02:27:12,716][00440] Avg episode rewards: #0: 23.687, true rewards: #0: 10.087
[2024-09-21 02:27:12,718][00440] Avg episode reward: 23.687, avg true_objective: 10.087
[2024-09-21 02:28:11,891][00440] Replay video saved to /content/train_dir/default_experiment/replay.mp4!