--- license: mit language: - zh --- --- 基于baichuan-inc/Baichuan-13B-Chat 做的GPTQ的量化,可直接加载,占用GPU约12G左右,用起来效果不错 --- 调用代码: ---------------- import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig model_dir = 'yinfupai/Baichuan-13B-Chat-GPTQ' tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir,device_map="auto",torch_dtype=torch.float16,trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained(model_dir) model.eval() messages = [] #按baichuan要求的格式 messages.append({"role": "user", "content": "列举一下先天八卦的卦象"}) response = model.chat(tokenizer, messages) print(response) ----------------------- 请注意模型的商用授权,请遵照baichuan-inc/Baichuan-13B-Chat的页面中的声明