a2c-AntBulletEnv-v0 / config.json
ying-zh's picture
Initial commit
75c3b02
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe71d6667a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe71d666830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe71d6668c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe71d666950>", "_build": "<function ActorCriticPolicy._build at 0x7fe71d6669e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe71d666a70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe71d666b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe71d666b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe71d666c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe71d666cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe71d666d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe71d666dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe71d65bd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685038230526495335, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC/Gib2HnQ++DgL3PuAuPb9zSIm/yaIyP0ArM797dXw+G4PRv/etRDsoGKI9T6pIvgCBhb/oELK/uxInP8bv1zy+rWY/TdZ/vwhxeL/y2xa/4CCyPjLRKr/HCTw/uEJOPwI1ED8yp6c+i6EnP6ulXr+1ZKs+azxnvywC0r5HgIg+TysOv6v6Qj9K2Xy/ee6UPjXHT790v+4+KCkFvkOm0z3xer+/mxF2PiIpJj/VyrI8IUHNvqE3Q7/OiJi/CT/qPJu6VD4COIU704dGPqAKsb4CNRA/MqenPouhJz+rpV6/6ADqvSY1ED4/Ric/CfVsPuQMkr/WCYY/c/xsv6EABT+9lLi/rRXvPq1jdr7/xIg+fbNTv1k3Vz7zYSY/SBPcPKZ/6T7krHK/FRGTv3rkl76AD84+d2CjPgBKGD/mC8E+AjUQPzKnpz6LoSc/sSyTP6XiKL88Tki+/ZTiPqqqgb+/vI8/FDEOvRnLKj+yW4s/3hfAv9NAbMB5YIW/VxxzPUvzOr9OCAXAieI5vyuodz5b0dg/iTfmvngUQj8uXwc/9RW9PpVU/r8f9Cq/EfmWPpM6478yp6c+GHrDv7Eskz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAASBxq0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqbY7PAAAAAAiEN+/AAAAAKmcsD0AAAAANL7fPwAAAAAtNru9AAAAAB1j/D8AAAAA2eQyvAAAAADsvv6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmCGItQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKJMxr0AAAAAg9XhvwAAAAAEDRG+AAAAADab9D8AAAAATsQuvQAAAABoHvc/AAAAAHwXB70AAAAAWFP8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANtpDzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBIQzY9AAAAANcm478AAAAAPsX7PAAAAAAw7fE/AAAAAMqEH7wAAAAA4azjPwAAAADoNwG+AAAAABdF2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7Sda1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATlXZvQAAAADr++y/AAAAAFMU270AAAAA+172PwAAAACwnCa8AAAAAMg77j8AAAAAb6KHPQAAAACCWf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJHrxECvHLmMAWyUTegDjAF0lEdAs7X2z4UN8XV9lChoBkdAj6BI9C/oJWgHTegDaAhHQLO2YUwztTl1fZQoaAZHQJdHOOxSpBJoB03oA2gIR0CzudsJpnHvdX2UKGgGR0CUCwupCKJmaAdN6ANoCEdAs7nbfBN21XV9lChoBkdAk4Qou9OARWgHTegDaAhHQLO8LqR2bG51fZQoaAZHQJaVMHY6GQFoB03oA2gIR0CzvJis4ku6dX2UKGgGR0CMFaogFHJ+aAdN6ANoCEdAs8GoOLBKtnV9lChoBkdAk9N4BvJiiWgHTegDaAhHQLPBqJ40Mw11fZQoaAZHQJP+IL7XQMRoB03oA2gIR0Czw/lLOAy3dX2UKGgGR0COb/qY7aIvaAdN6ANoCEdAs8RjeEZiu3V9lChoBkdAlHGItthuwWgHTegDaAhHQLPH55ggHNZ1fZQoaAZHQJLTLk2gnMNoB03oA2gIR0Czx+gE+xGEdX2UKGgGR0CTgjgG8mKJaAdN6ANoCEdAs8oumzjWCnV9lChoBkdAk4WxvNu+AWgHTegDaAhHQLPKnnXumaZ1fZQoaAZHQJH2kwco6S1oB03oA2gIR0Czz5X++/QCdX2UKGgGR0B81pVinYQKaAdN6ANoCEdAs8+W0a6z3XV9lChoBkdAk+PGZeAuqWgHTegDaAhHQLPSGtKqXF91fZQoaAZHQJFNF9tuUEBoB03oA2gIR0Cz0oN8qnWKdX2UKGgGR0CXe02lEZzgaAdN6ANoCEdAs9YAXGff43V9lChoBkdAlzo+LR8c/GgHTegDaAhHQLPWAMzdk8R1fZQoaAZHQJgw6PS2H+JoB03oA2gIR0Cz2GpVbRnfdX2UKGgGR0CWt8e5Fw1jaAdN6ANoCEdAs9kA/HHWBnV9lChoBkdAllDIFeOXFGgHTegDaAhHQLPeh33pOet1fZQoaAZHQJh6pqFh5PdoB03oA2gIR0Cz3oh1X/5tdX2UKGgGR0CZh1HpbD/EaAdN6ANoCEdAs+HdmFrVOXV9lChoBkdAlIs44ZMtb2gHTegDaAhHQLPiR+5e7cx1fZQoaAZHQJkZmm0mdAhoB03oA2gIR0Cz5btTP0I1dX2UKGgGR0CVE06QeV9naAdN6ANoCEdAs+W7t9hJAnV9lChoBkdAlA3qqGUOeGgHTegDaAhHQLPoAjaPCEZ1fZQoaAZHQJdmwDDCP6toB03oA2gIR0Cz6G7/4qPPdX2UKGgGR0CTs07k4m1IaAdN6ANoCEdAs+w/hBJI2HV9lChoBkdAmQpSmZVn3GgHTegDaAhHQLPsQEL6UJR1fZQoaAZHQJhkQvqTr3VoB03oA2gIR0Cz796RQrMDdX2UKGgGR0CXbgikwevIaAdN6ANoCEdAs/BPS6UaAHV9lChoBkdAkZgNPxhDxGgHTegDaAhHQLPz0DrZ8KJ1fZQoaAZHQJJnsYP5HmRoB03oA2gIR0Cz89CidrftdX2UKGgGR0CSV/Av+OwQaAdN6ANoCEdAs/Y4YvWYnnV9lChoBkdAkiDfiT+vQmgHTegDaAhHQLP2o5IpYtB1fZQoaAZHQJIecagmJFdoB03oA2gIR0Cz+l/ZZjhDdX2UKGgGR0CFv6nx8UmEaAdN6ANoCEdAs/pgrK/203V9lChoBkdAiQaAjhUBGWgHTegDaAhHQLP97K9wm3R1fZQoaAZHQJLrZGqgh8poB03oA2gIR0Cz/o6VMVUNdX2UKGgGR0CKyeOMl1KXaAdN6ANoCEdAtAIiU2UB4nV9lChoBkdAlPOzbFjur2gHTegDaAhHQLQCIr5ZbIN1fZQoaAZHQJOy5CgK4QVoB03oA2gIR0C0BIMtGus+dX2UKGgGR0CSRUpt78ekaAdN6ANoCEdAtATv7SApa3V9lChoBkdAkiGPnW8RMGgHTegDaAhHQLQIa6yB06p1fZQoaAZHQJBY+00FbFFoB03oA2gIR0C0CGwjt5UtdX2UKGgGR0CR7LJvo/zKaAdN6ANoCEdAtAv75CWu5nV9lChoBkdAlqUPShJyyWgHTegDaAhHQLQMpIGyHEd1fZQoaAZHQJLlK6mO2iNoB03oA2gIR0C0EF0Gmk30dX2UKGgGR0CPsjfO2RaHaAdN6ANoCEdAtBBdagVXWHV9lChoBkdAk3Nxdld1MmgHTegDaAhHQLQSuFGXokl1fZQoaAZHQJMfoLF4s3BoB03oA2gIR0C0Ex+Wv8qGdX2UKGgGR0CP75H7xd6caAdN6ANoCEdAtBajLzPKMnV9lChoBkdAkPH13hXKbWgHTegDaAhHQLQWo5XEIgN1fZQoaAZHQJX+tBOYYzloB03oA2gIR0C0GctXHR1HdX2UKGgGR0CTL4abnX/YaAdN6ANoCEdAtBpx2yLQ5XV9lChoBkdAlEEc+/xlQWgHTegDaAhHQLQeexIatLd1fZQoaAZHQJD6jslb/wRoB03oA2gIR0C0Hnt5+pfhdX2UKGgGR0CRvkv2Xb/PaAdN6ANoCEdAtCDZIe5nUXV9lChoBkdAkGv8t5D7ZWgHTegDaAhHQLQhRZwXIlt1fZQoaAZHQJNcauOjqOdoB03oA2gIR0C0JMXKKYRedX2UKGgGR0B8XVzltCRfaAdN6ANoCEdAtCTGMS9M9XV9lChoBkdAV/Nalk6LfmgHS4ZoCEdAtCWYwL3K0XV9lChoBkdAgyh26kIomWgHTQcDaAhHQLQlsePq9oN1fZQoaAZHP7ESRKYiPhhoB00MAWgIR0C0JrdAs053dX2UKGgGR0CR6sJwbVBlaAdN6ANoCEdAtChnposZpHV9lChoBkdAlSh6PbO/tmgHTegDaAhHQLQthaisXBR1fZQoaAZHQJKoDdBSk0toB03oA2gIR0C0LZ2cz67/dX2UKGgGR0CQy+xKg7HRaAdN6ANoCEdAtC5aNXHR1HV9lChoBkdAk6ej9KmKqGgHTegDaAhHQLQvaXt0FKV1fZQoaAZHQI5F6mfoRqZoB03oA2gIR0C0M7mbLEDRdX2UKGgGR0CXAXnGsFMaaAdN6ANoCEdAtDPQ9U0el3V9lChoBkdAjm+N34bjtGgHTegDaAhHQLQ0kjSG8Ep1fZQoaAZHQJeAKJgsshBoB03oA2gIR0C0NhfXoTwldX2UKGgGR0CUWedUsFt9aAdN6ANoCEdAtDtmWpqASXV9lChoBkdAl3xAq7ROUWgHTegDaAhHQLQ7fWbPQfJ1fZQoaAZHQJdPwD0UXYVoB03oA2gIR0C0PDHYHxBmdX2UKGgGR0CX6/9AHE/CaAdN6ANoCEdAtD1FrSE123V9lChoBkdAmgJmQwK0D2gHTegDaAhHQLRBjoK2KEZ1fZQoaAZHQJn2QMI/qxFoB03oA2gIR0C0QaWTX8O1dX2UKGgGR0CZnC/0/W1/aAdN6ANoCEdAtEJkJAt4A3V9lChoBkdAmIuqUaAFxGgHTegDaAhHQLRDnYLb5/N1fZQoaAZHQJZ8C5QP7N1oB03oA2gIR0C0SXCDqW1MdX2UKGgGR0CWancpsoDxaAdN6ANoCEdAtEmK+PBBRnV9lChoBkdAlE4qZhKDkGgHTegDaAhHQLRKR2ugYgt1fZQoaAZHQJVsUizLOiZoB03oA2gIR0C0S1iI1tO3dX2UKGgGR0CU3IytV7x/aAdN6ANoCEdAtE+4jjaPCHV9lChoBkdAiOOBjvuw5mgHTegDaAhHQLRP0HzH0bt1fZQoaAZHQJdBgdxQzk9oB03oA2gIR0C0UI2RmseXdX2UKGgGR0CWVcBhhH9WaAdN6ANoCEdAtFGhQm/nGXV9lChoBkdAliNppN9H+mgHTegDaAhHQLRXgJiy6c11fZQoaAZHQJdNstrbg0loB03oA2gIR0C0V5gMlTm5dX2UKGgGR0CWE7D6Fds0aAdN6ANoCEdAtFhVbY9PlHV9lChoBkdAltkHyiEg4mgHTegDaAhHQLRZZ6Hj6vd1fZQoaAZHQJROm5nUUfxoB03oA2gIR0C0Xb37k4m1dX2UKGgGR0CXFUHBDXvqaAdN6ANoCEdAtF3V9LHuJHV9lChoBkdAlfqkxubZvmgHTegDaAhHQLRelK+SKWN1fZQoaAZHQJd+ELWqcVhoB03oA2gIR0C0X6HpSrHVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 85064, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}