Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.23 +/- 0.42
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:951d4ec64e9cc34e810f1b11e49962e8da6cc6683ea97ea7cd921247fe96a0b0
|
3 |
+
size 109656
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -19,24 +21,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 2000000,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1685111488485314522,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfK7KvyV7mL/+d7++fW+gPl2upL7Por+963bEP+msgT+ypVC+AfCdv0fF27/wP6o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADT/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]]",
|
40 |
+
"desired_goal": "[[-1.5834498 -1.1912581 -0.37396234]\n [ 0.3133506 -0.3216428 -0.09357225]\n [ 1.5348791 1.0130893 -0.20375708]\n [-1.2338868 -1.7169579 1.3300762 ]]",
|
41 |
+
"observation": "[[ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlmcDPv2pAD4fKNo9my5uvFs4Db6rBaA96cy2PQZ3Cz4HCD8+ObEEvjt1WT3sn30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.12832484 0.12564845 0.10652184]\n [-0.01453748 -0.13791029 0.07813581]\n [ 0.08925802 0.13619623 0.18655406]\n [-0.1295823 0.05309032 0.24768037]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L2jxoSY57+UhpRSlIwBbJRLMowBdJRHQLiJRvhqCYl1fZQoaAZoCWgPQwjb+X5qvHTdv5SGlFKUaBVLMmgWR0C4iR4sNDtxdX2UKGgGaAloD0MIXwzlRLvK97+UhpRSlGgVSzJoFkdAuIj9TJhfB3V9lChoBmgJaA9DCOylKQKcXvC/lIaUUpRoFUsyaBZHQLiI3KyOaOR1fZQoaAZoCWgPQwhagSGrW73kv5SGlFKUaBVLMmgWR0C4ijpEc81XdX2UKGgGaAloD0MIAmcpWU4C/7+UhpRSlGgVSzJoFkdAuIoR9y925nV9lChoBmgJaA9DCEEqxY7GIfi/lIaUUpRoFUsyaBZHQLiJ8UOd5IJ1fZQoaAZoCWgPQwgEH4MVp9rrv5SGlFKUaBVLMmgWR0C4idC4jKPodX2UKGgGaAloD0MIqDrkZrhB87+UhpRSlGgVSzJoFkdAuIs1OwgTy3V9lChoBmgJaA9DCKnBNAwfkfK/lIaUUpRoFUsyaBZHQLiLDPqcEvF1fZQoaAZoCWgPQwjs3/WZs77lv5SGlFKUaBVLMmgWR0C4iuw7HQyAdX2UKGgGaAloD0MInE6y1eWU7b+UhpRSlGgVSzJoFkdAuIrLmOlwcnV9lChoBmgJaA9DCPMhqBq9GuS/lIaUUpRoFUsyaBZHQLiML2EkB0Z1fZQoaAZoCWgPQwjAJmvUQ/Twv5SGlFKUaBVLMmgWR0C4jAbx7RfGdX2UKGgGaAloD0MIZ0P+mUE8+L+UhpRSlGgVSzJoFkdAuIvmCz1K5HV9lChoBmgJaA9DCLGIYYcxafa/lIaUUpRoFUsyaBZHQLiLxVx0dR11fZQoaAZoCWgPQwgoLVxWYXPxv5SGlFKUaBVLMmgWR0C4jThC2MKkdX2UKGgGaAloD0MIw4L7AQ8M97+UhpRSlGgVSzJoFkdAuI0P2wmmcnV9lChoBmgJaA9DCI2Y2ecxyuW/lIaUUpRoFUsyaBZHQLiM7vL5h0B1fZQoaAZoCWgPQwjDLLRzmoXwv5SGlFKUaBVLMmgWR0C4jM6IacZtdX2UKGgGaAloD0MIuamB5nNu/b+UhpRSlGgVSzJoFkdAuI3T+85CGHV9lChoBmgJaA9DCPYn8bkTrPu/lIaUUpRoFUsyaBZHQLiNqv3ai9J1fZQoaAZoCWgPQwheL00R4DTxv5SGlFKUaBVLMmgWR0C4jYmc8TzvdX2UKGgGaAloD0MIaEEo7+Po8b+UhpRSlGgVSzJoFkdAuI1oieNDMXV9lChoBmgJaA9DCJIiMqziDf6/lIaUUpRoFUsyaBZHQLiOUPJ7sv91fZQoaAZoCWgPQwjJrUm3JTL4v5SGlFKUaBVLMmgWR0C4jifqTr3TdX2UKGgGaAloD0MImkLnNXbJ8b+UhpRSlGgVSzJoFkdAuI4GdvsJIHV9lChoBmgJaA9DCOP/jqhQPQDAlIaUUpRoFUsyaBZHQLiN5TDO1OV1fZQoaAZoCWgPQwig+3Jmu4Lwv5SGlFKUaBVLMmgWR0C4jtp9uxbCdX2UKGgGaAloD0MIuY5xxcXR97+UhpRSlGgVSzJoFkdAuI6x3wCr93V9lChoBmgJaA9DCMr8o2/S9PK/lIaUUpRoFUsyaBZHQLiOkJ4jbBZ1fZQoaAZoCWgPQwhJgQUwZeD4v5SGlFKUaBVLMmgWR0C4jm9wvQF+dX2UKGgGaAloD0MI4uR+h6KA+b+UhpRSlGgVSzJoFkdAuI9tDWsijnV9lChoBmgJaA9DCHkCYadYNei/lIaUUpRoFUsyaBZHQLiPQ/5Lytp1fZQoaAZoCWgPQwjZ0M3+QLn1v5SGlFKUaBVLMmgWR0C4jyLo8p1BdX2UKGgGaAloD0MIK2owDcPHA8CUhpRSlGgVSzJoFkdAuI8CIgvDg3V9lChoBmgJaA9DCHXIzXADvvW/lIaUUpRoFUsyaBZHQLiP8I91U2l1fZQoaAZoCWgPQwhiLqnabsL7v5SGlFKUaBVLMmgWR0C4j8ebd8ArdX2UKGgGaAloD0MI9SwI5X08AsCUhpRSlGgVSzJoFkdAuI+mNT987nV9lChoBmgJaA9DCOEnDqDfd/e/lIaUUpRoFUsyaBZHQLiPhQd0aIh1fZQoaAZoCWgPQwiXOsjrwWTxv5SGlFKUaBVLMmgWR0C4kHDKkl/pdX2UKGgGaAloD0MImntI+N7/AMCUhpRSlGgVSzJoFkdAuJBHsu3+dnV9lChoBmgJaA9DCLFPAMXIEvm/lIaUUpRoFUsyaBZHQLiQJkxREWt1fZQoaAZoCWgPQwiGcw0zNH4AwJSGlFKUaBVLMmgWR0C4kAUMb3oLdX2UKGgGaAloD0MIW0I+6Nns97+UhpRSlGgVSzJoFkdAuJDuekHlfnV9lChoBmgJaA9DCEOqKF5lbfO/lIaUUpRoFUsyaBZHQLiQxVuJk5J1fZQoaAZoCWgPQwiJmujzUQb7v5SGlFKUaBVLMmgWR0C4kKQjyFwldX2UKGgGaAloD0MIQj9Tr1uE+L+UhpRSlGgVSzJoFkdAuJCDBO58SnV9lChoBmgJaA9DCLq8OVyr/fW/lIaUUpRoFUsyaBZHQLiRY4+r2g51fZQoaAZoCWgPQwgVjErqBHTxv5SGlFKUaBVLMmgWR0C4kTqwpvxZdX2UKGgGaAloD0MIW1t4Xio28r+UhpRSlGgVSzJoFkdAuJEZSaVlgHV9lChoBmgJaA9DCG1vtyQH7PW/lIaUUpRoFUsyaBZHQLiQ+BlcyFh1fZQoaAZoCWgPQwhIowIn20D5v5SGlFKUaBVLMmgWR0C4kfIKIBRydX2UKGgGaAloD0MIoYUEjC5v/b+UhpRSlGgVSzJoFkdAuJHJLOAy23V9lChoBmgJaA9DCDI89rNYivq/lIaUUpRoFUsyaBZHQLiRp/cFhXt1fZQoaAZoCWgPQwj7Xdiarfzzv5SGlFKUaBVLMmgWR0C4kYbnHNordX2UKGgGaAloD0MIJgFqatla9b+UhpRSlGgVSzJoFkdAuJKGq6vq1XV9lChoBmgJaA9DCF8NUBpqlPS/lIaUUpRoFUsyaBZHQLiSXazNUwV1fZQoaAZoCWgPQwglzoqoiV4EwJSGlFKUaBVLMmgWR0C4kjy2x6fKdX2UKGgGaAloD0MIRyBe1y/Y3L+UhpRSlGgVSzJoFkdAuJIbjghr33V9lChoBmgJaA9DCAFPWrisgvK/lIaUUpRoFUsyaBZHQLiTDjQzDXR1fZQoaAZoCWgPQwj8UGnEzD7hv5SGlFKUaBVLMmgWR0C4kuVFpfx+dX2UKGgGaAloD0MISREZVvEmAMCUhpRSlGgVSzJoFkdAuJLD/6wdKnV9lChoBmgJaA9DCHnou1tZIua/lIaUUpRoFUsyaBZHQLiSouNgjQl1fZQoaAZoCWgPQwhnQ/6ZQfzqv5SGlFKUaBVLMmgWR0C4k5CZrpJPdX2UKGgGaAloD0MIS3hCrz8J/L+UhpRSlGgVSzJoFkdAuJNnnvDxb3V9lChoBmgJaA9DCOW2fY/6K/K/lIaUUpRoFUsyaBZHQLiTRkzXSSh1fZQoaAZoCWgPQwgGEhQ/xhzwv5SGlFKUaBVLMmgWR0C4kyUT6BRRdX2UKGgGaAloD0MIfh6jPPNy6b+UhpRSlGgVSzJoFkdAuJQZqKxcFHV9lChoBmgJaA9DCLnH0ocuaPa/lIaUUpRoFUsyaBZHQLiT8MKTjed1fZQoaAZoCWgPQwidZKvLKYHsv5SGlFKUaBVLMmgWR0C4k8+AiFCcdX2UKGgGaAloD0MI9l0R/G8l77+UhpRSlGgVSzJoFkdAuJOugGr0a3V9lChoBmgJaA9DCA3jbhCtFfG/lIaUUpRoFUsyaBZHQLiUpuJ1q351fZQoaAZoCWgPQwjJ5qp5jgj2v5SGlFKUaBVLMmgWR0C4lH4PK+zudX2UKGgGaAloD0MIbmx2pPrO47+UhpRSlGgVSzJoFkdAuJRc0ygwoXV9lChoBmgJaA9DCNsV+mAZW/i/lIaUUpRoFUsyaBZHQLiUO8UEgW91fZQoaAZoCWgPQwi8r8qFyr/nv5SGlFKUaBVLMmgWR0C4lTWq94/vdX2UKGgGaAloD0MIq3XicrwC6b+UhpRSlGgVSzJoFkdAuJUM4Otnw3V9lChoBmgJaA9DCO8AT1q4LO6/lIaUUpRoFUsyaBZHQLiU69C/oJR1fZQoaAZoCWgPQwiCdLFppRD3v5SGlFKUaBVLMmgWR0C4lMq5TZQIdX2UKGgGaAloD0MIYAMixJVz+r+UhpRSlGgVSzJoFkdAuJW7E5yU93V9lChoBmgJaA9DCH5xqUpbHPS/lIaUUpRoFUsyaBZHQLiVkmqYJE91fZQoaAZoCWgPQwiuRnalZWT6v5SGlFKUaBVLMmgWR0C4lXGEPDpDdX2UKGgGaAloD0MIUcB2MGIf9b+UhpRSlGgVSzJoFkdAuJVQlZ5iVnV9lChoBmgJaA9DCDIfEOhM2uy/lIaUUpRoFUsyaBZHQLiWU4dp7C11fZQoaAZoCWgPQwgKoYMu4VD3v5SGlFKUaBVLMmgWR0C4liqcqe9SdX2UKGgGaAloD0MIJUBNLVtr5L+UhpRSlGgVSzJoFkdAuJYJWilBQnV9lChoBmgJaA9DCGxDxTh/k/y/lIaUUpRoFUsyaBZHQLiV6I+GGmF1fZQoaAZoCWgPQwipvvOLEvTqv5SGlFKUaBVLMmgWR0C4ltie7L+xdX2UKGgGaAloD0MIu38sRIfAAcCUhpRSlGgVSzJoFkdAuJavrxAjZHV9lChoBmgJaA9DCJqy0w/qYvK/lIaUUpRoFUsyaBZHQLiWjmfoRqZ1fZQoaAZoCWgPQwiYUSy3tBruv5SGlFKUaBVLMmgWR0C4lm04BFNMdX2UKGgGaAloD0MI7+L9uP3y57+UhpRSlGgVSzJoFkdAuJeHZ39rGnV9lChoBmgJaA9DCLIubqMBvP6/lIaUUpRoFUsyaBZHQLiXX4rSVnp1fZQoaAZoCWgPQwgB4Niz53Lwv5SGlFKUaBVLMmgWR0C4lz6sp5NXdX2UKGgGaAloD0MIOxvyzwzi97+UhpRSlGgVSzJoFkdAuJcdvze41HV9lChoBmgJaA9DCORp+YGrfPa/lIaUUpRoFUsyaBZHQLiYjXrMTvl1fZQoaAZoCWgPQwgv98lRgKjxv5SGlFKUaBVLMmgWR0C4mGUT6BRRdX2UKGgGaAloD0MIRl9BmrFo87+UhpRSlGgVSzJoFkdAuJhE8+zMR3V9lChoBmgJaA9DCJkprb8lgPq/lIaUUpRoFUsyaBZHQLiYJDlo11p1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 62500,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f28ee07091320e8b7743f9b971d50ba80d8a13a9fbeec6138b5e8d3b66d9bd1
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ad1e156be6b351c984bbdc8f7d35abe7732d04ac1d5b5498c2ae1573fd54384
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6dd0adbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc6dd0b0bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685107336136804547, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqvaVPpgofLvvDxw/qvaVPpgofLvvDxw/qvaVPpgofLvvDxw/qvaVPpgofLvvDxw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfJ6gP+ERQD8/wr0+BZ3Nv/6MMr/WYSW/X8nJv6B7kD48H6Q/GhGLP3EXlj9OBRw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACq9pU+mCh8u+8PHD9Usoq8KGcAOlJkBryq9pU+mCh8u+8PHD9Usoq8KGcAOlJkBryq9pU+mCh8u+8PHD9Usoq8KGcAOlJkBryq9pU+mCh8u+8PHD9Usoq8KGcAOlJkBryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.29289752 -0.00384763 0.6096181 ]\n [ 0.29289752 -0.00384763 0.6096181 ]\n [ 0.29289752 -0.00384763 0.6096181 ]\n [ 0.29289752 -0.00384763 0.6096181 ]]", "desired_goal": "[[ 1.2548366 0.7502728 0.3706226 ]\n [-1.6063544 -0.69746387 -0.6460241 ]\n [-1.5764579 0.28219318 1.2822032 ]\n [ 1.0864594 1.1725904 0.60945594]]", "observation": "[[ 2.9289752e-01 -3.8476344e-03 6.0961813e-01 -1.6930737e-02\n 4.8981840e-04 -8.2026292e-03]\n [ 2.9289752e-01 -3.8476344e-03 6.0961813e-01 -1.6930737e-02\n 4.8981840e-04 -8.2026292e-03]\n [ 2.9289752e-01 -3.8476344e-03 6.0961813e-01 -1.6930737e-02\n 4.8981840e-04 -8.2026292e-03]\n [ 2.9289752e-01 -3.8476344e-03 6.0961813e-01 -1.6930737e-02\n 4.8981840e-04 -8.2026292e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAd9D9PQqwDT4tHD4+GwMYPqo6JL2yEZk+EVYkOyHzGD10OhY+R6QJvavemDwLC0w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12393277 0.13836685 0.18565436]\n [ 0.14844935 -0.04009501 0.29896313]\n [ 0.00250757 0.03734124 0.14670736]\n [-0.03360393 0.01866086 0.19926088]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZTcz+tEQB8CUhpRSlIwBbJRLMowBdJRHQKf8QhvBJqZ1fZQoaAZoCWgPQwijO4idKaQWwJSGlFKUaBVLMmgWR0Cn/AGReTmodX2UKGgGaAloD0MIdvusMlMqEcCUhpRSlGgVSzJoFkdAp/vCN83Mp3V9lChoBmgJaA9DCBE10eej7AfAlIaUUpRoFUsyaBZHQKf7eNUfgaZ1fZQoaAZoCWgPQwhHx9XIrpQDwJSGlFKUaBVLMmgWR0Cn/S+0w8GLdX2UKGgGaAloD0MIfSQlPQxtDcCUhpRSlGgVSzJoFkdAp/zvKKYRd3V9lChoBmgJaA9DCKZIvhJIWRjAlIaUUpRoFUsyaBZHQKf8r6XSjQB1fZQoaAZoCWgPQwiQwB9+/vsNwJSGlFKUaBVLMmgWR0Cn/GXwsoUjdX2UKGgGaAloD0MIQ1a3ek56B8CUhpRSlGgVSzJoFkdAp/4kd/8VHnV9lChoBmgJaA9DCOVgNgGGJRjAlIaUUpRoFUsyaBZHQKf95DVpbll1fZQoaAZoCWgPQwiFJ/T6k9gLwJSGlFKUaBVLMmgWR0Cn/aSIP9UCdX2UKGgGaAloD0MICYofY+4aCcCUhpRSlGgVSzJoFkdAp/1ayhSLqHV9lChoBmgJaA9DCM5RR8fV+BfAlIaUUpRoFUsyaBZHQKf/FASnLq51fZQoaAZoCWgPQwgBv0aSIHwLwJSGlFKUaBVLMmgWR0Cn/tN+LFXJdX2UKGgGaAloD0MII7w9CAH5HsCUhpRSlGgVSzJoFkdAp/6T4WUKRnV9lChoBmgJaA9DCESjO4idCQPAlIaUUpRoFUsyaBZHQKf+Sh0yP+51fZQoaAZoCWgPQwhEw2LUtUYTwJSGlFKUaBVLMmgWR0CoABAHmig1dX2UKGgGaAloD0MI5Ga4AZ+fC8CUhpRSlGgVSzJoFkdAp//PmeUY9HV9lChoBmgJaA9DCM42N6YnTBnAlIaUUpRoFUsyaBZHQKf/kAPNFBp1fZQoaAZoCWgPQwiC4zJuaqAOwJSGlFKUaBVLMmgWR0Cn/0aHTI/8dX2UKGgGaAloD0MIq0GY273cAsCUhpRSlGgVSzJoFkdAqAEVAzHjqHV9lChoBmgJaA9DCAaf5uRFBgDAlIaUUpRoFUsyaBZHQKgA1ItDlYF1fZQoaAZoCWgPQwjZk8DmHLwRwJSGlFKUaBVLMmgWR0CoAJT/yXlbdX2UKGgGaAloD0MI/ACkNnGCF8CUhpRSlGgVSzJoFkdAqABLkGRmsnV9lChoBmgJaA9DCACuZMdG4AHAlIaUUpRoFUsyaBZHQKgCGxwhnrZ1fZQoaAZoCWgPQwgiADj27JkGwJSGlFKUaBVLMmgWR0CoAdq9wm3OdX2UKGgGaAloD0MIPfNy2H2XFMCUhpRSlGgVSzJoFkdAqAGbMHKOk3V9lChoBmgJaA9DCBTnqKPjmhHAlIaUUpRoFUsyaBZHQKgBUZqEeyR1fZQoaAZoCWgPQwgjn1c89agIwJSGlFKUaBVLMmgWR0CoAxwu27WedX2UKGgGaAloD0MImxvTE5bYDcCUhpRSlGgVSzJoFkdAqALbrkbPyHV9lChoBmgJaA9DCBd+cD51jBbAlIaUUpRoFUsyaBZHQKgCnCDVYp51fZQoaAZoCWgPQwgMBtfc0V8PwJSGlFKUaBVLMmgWR0CoAlJw84gidX2UKGgGaAloD0MIEce6uI0mDMCUhpRSlGgVSzJoFkdAqAQi2rn1WnV9lChoBmgJaA9DCINqgxPRHxHAlIaUUpRoFUsyaBZHQKgD4liz9jx1fZQoaAZoCWgPQwjzID1FDsEVwJSGlFKUaBVLMmgWR0CoA6K+i8FqdX2UKGgGaAloD0MIWW3+X3X0FMCUhpRSlGgVSzJoFkdAqANZBkZrHnV9lChoBmgJaA9DCIC4q1eRYRvAlIaUUpRoFUsyaBZHQKgFLGipNsZ1fZQoaAZoCWgPQwg+PiE7bwMXwJSGlFKUaBVLMmgWR0CoBOuy3Td+dX2UKGgGaAloD0MIdw/QfTlTDsCUhpRSlGgVSzJoFkdAqASsNDtw73V9lChoBmgJaA9DCCDu6lVktB7AlIaUUpRoFUsyaBZHQKgEYn2Iwdt1fZQoaAZoCWgPQwg/i6VIvlIMwJSGlFKUaBVLMmgWR0CoBik1/DtPdX2UKGgGaAloD0MIzjl4JjTJFsCUhpRSlGgVSzJoFkdAqAXotL+PzXV9lChoBmgJaA9DCN+KxAQ1fAbAlIaUUpRoFUsyaBZHQKgFqW5Yoy91fZQoaAZoCWgPQwjb+BOVDQsFwJSGlFKUaBVLMmgWR0CoBV/s/pt8dX2UKGgGaAloD0MIB5j5Dn5iA8CUhpRSlGgVSzJoFkdAqAePQY1pCnV9lChoBmgJaA9DCFAYlGk0GRPAlIaUUpRoFUsyaBZHQKgHT2xIJ7d1fZQoaAZoCWgPQwhF2PD0SjkHwJSGlFKUaBVLMmgWR0CoBxDB/I8ydX2UKGgGaAloD0MInnqkwW1dE8CUhpRSlGgVSzJoFkdAqAbHs9jgAXV9lChoBmgJaA9DCPEqa5vi0QXAlIaUUpRoFUsyaBZHQKgJJ8Kohpx1fZQoaAZoCWgPQwhXmL7XENwEwJSGlFKUaBVLMmgWR0CoCOgm7aqTdX2UKGgGaAloD0MI4JwRpb3xFcCUhpRSlGgVSzJoFkdAqAipSpBHC3V9lChoBmgJaA9DCH8vhQfNDgXAlIaUUpRoFUsyaBZHQKgIYE0SAYp1fZQoaAZoCWgPQwjL12X4T+cZwJSGlFKUaBVLMmgWR0CoCt99lVcVdX2UKGgGaAloD0MI9G+X/bqTCsCUhpRSlGgVSzJoFkdAqAqgAyVObnV9lChoBmgJaA9DCJLLf0i/7RLAlIaUUpRoFUsyaBZHQKgKYYeDFqB1fZQoaAZoCWgPQwiG6BA4EggXwJSGlFKUaBVLMmgWR0CoChlPJq7AdX2UKGgGaAloD0MItDo5Q3FnBsCUhpRSlGgVSzJoFkdAqAygGpuMuXV9lChoBmgJaA9DCJ86Vik94xfAlIaUUpRoFUsyaBZHQKgMYF6Avtd1fZQoaAZoCWgPQwhpOjsZHOUOwJSGlFKUaBVLMmgWR0CoDCHoPkJbdX2UKGgGaAloD0MIE57Q609yFsCUhpRSlGgVSzJoFkdAqAvZRl6JInV9lChoBmgJaA9DCESkpl1M4xrAlIaUUpRoFUsyaBZHQKgOdDtPYWd1fZQoaAZoCWgPQwilpIeh1UkHwJSGlFKUaBVLMmgWR0CoDjTMibDudX2UKGgGaAloD0MIdhvUfmtHAsCUhpRSlGgVSzJoFkdAqA32eBg/knV9lChoBmgJaA9DCGw+rg0VQwPAlIaUUpRoFUsyaBZHQKgNrWOIZZV1fZQoaAZoCWgPQwhKQEzChRwKwJSGlFKUaBVLMmgWR0CoEDYKhL5AdX2UKGgGaAloD0MIk40HW+w2C8CUhpRSlGgVSzJoFkdAqA/3LaEi+3V9lChoBmgJaA9DCFJflnZqLgTAlIaUUpRoFUsyaBZHQKgPuJ3xFy91fZQoaAZoCWgPQwiKyoY1lUUUwJSGlFKUaBVLMmgWR0CoD2/t6X0HdX2UKGgGaAloD0MIS3LAribPEsCUhpRSlGgVSzJoFkdAqBF1Iqbz9XV9lChoBmgJaA9DCIoFvqJbTxPAlIaUUpRoFUsyaBZHQKgRNIjGDL91fZQoaAZoCWgPQwjURJ+PMgIPwJSGlFKUaBVLMmgWR0CoEPU2cawVdX2UKGgGaAloD0MIcQLTad2WEMCUhpRSlGgVSzJoFkdAqBCrmwJPZnV9lChoBmgJaA9DCGGOHr+3OR7AlIaUUpRoFUsyaBZHQKgShOZb6gx1fZQoaAZoCWgPQwgN3lflQgUOwJSGlFKUaBVLMmgWR0CoEkSBClabdX2UKGgGaAloD0MIoP6z5sdfGcCUhpRSlGgVSzJoFkdAqBIE5n13+3V9lChoBmgJaA9DCKDGvfkNEwzAlIaUUpRoFUsyaBZHQKgRu5Fw1ix1fZQoaAZoCWgPQwhcA1slWKwcwJSGlFKUaBVLMmgWR0CoE4ejua4MdX2UKGgGaAloD0MI56kOuRnuCcCUhpRSlGgVSzJoFkdAqBNHICEHuHV9lChoBmgJaA9DCLn7HB8tLg/AlIaUUpRoFUsyaBZHQKgTB7hvR7Z1fZQoaAZoCWgPQwgUW0HTEisPwJSGlFKUaBVLMmgWR0CoEr5jYqXodX2UKGgGaAloD0MI+3PRkPEoFsCUhpRSlGgVSzJoFkdAqBSGl9BrvnV9lChoBmgJaA9DCFYL7DGREhnAlIaUUpRoFUsyaBZHQKgURl0YCQt1fZQoaAZoCWgPQwgw8rImFjgTwJSGlFKUaBVLMmgWR0CoFAbONYKZdX2UKGgGaAloD0MIONibGJIDHsCUhpRSlGgVSzJoFkdAqBO9ENOM2nV9lChoBmgJaA9DCMtMaf0tERTAlIaUUpRoFUsyaBZHQKgVi+7Dl5p1fZQoaAZoCWgPQwhZ38DkRlElwJSGlFKUaBVLMmgWR0CoFUs9jgAIdX2UKGgGaAloD0MIT3Rd+MHpFMCUhpRSlGgVSzJoFkdAqBULksBhhHV9lChoBmgJaA9DCM41zNB4wgnAlIaUUpRoFUsyaBZHQKgUweDFqBV1fZQoaAZoCWgPQwhK7rCJzLwCwJSGlFKUaBVLMmgWR0CoFoj15B1LdX2UKGgGaAloD0MIt5p1xveVIMCUhpRSlGgVSzJoFkdAqBZIfdRBNXV9lChoBmgJaA9DCIQsCyb+aB/AlIaUUpRoFUsyaBZHQKgWCQV9F4N1fZQoaAZoCWgPQwgM5US7CmkUwJSGlFKUaBVLMmgWR0CoFb9DQZ4wdX2UKGgGaAloD0MILPLrh9hgC8CUhpRSlGgVSzJoFkdAqBeIkNWluXV9lChoBmgJaA9DCFjFG5lH/g/AlIaUUpRoFUsyaBZHQKgXR/Ue+251fZQoaAZoCWgPQwjMmljgK2oVwJSGlFKUaBVLMmgWR0CoFwiFsYVJdX2UKGgGaAloD0MIpOGUufmWEsCUhpRSlGgVSzJoFkdAqBa+us90R3V9lChoBmgJaA9DCJlk5CzsESXAlIaUUpRoFUsyaBZHQKgYiiKziS91fZQoaAZoCWgPQwjWkLjH0icRwJSGlFKUaBVLMmgWR0CoGElzdUKidX2UKGgGaAloD0MIowbTMHwkBMCUhpRSlGgVSzJoFkdAqBgKMir1d3V9lChoBmgJaA9DCKQXtftVsBzAlIaUUpRoFUsyaBZHQKgXwIUJv5x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6dd0adbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc6dd0b0bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685111488485314522, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfK7KvyV7mL/+d7++fW+gPl2upL7Por+963bEP+msgT+ypVC+AfCdv0fF27/wP6o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADT/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]]", "desired_goal": "[[-1.5834498 -1.1912581 -0.37396234]\n [ 0.3133506 -0.3216428 -0.09357225]\n [ 1.5348791 1.0130893 -0.20375708]\n [-1.2338868 -1.7169579 1.3300762 ]]", "observation": "[[ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlmcDPv2pAD4fKNo9my5uvFs4Db6rBaA96cy2PQZ3Cz4HCD8+ObEEvjt1WT3sn30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12832484 0.12564845 0.10652184]\n [-0.01453748 -0.13791029 0.07813581]\n [ 0.08925802 0.13619623 0.18655406]\n [-0.1295823 0.05309032 0.24768037]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L2jxoSY57+UhpRSlIwBbJRLMowBdJRHQLiJRvhqCYl1fZQoaAZoCWgPQwjb+X5qvHTdv5SGlFKUaBVLMmgWR0C4iR4sNDtxdX2UKGgGaAloD0MIXwzlRLvK97+UhpRSlGgVSzJoFkdAuIj9TJhfB3V9lChoBmgJaA9DCOylKQKcXvC/lIaUUpRoFUsyaBZHQLiI3KyOaOR1fZQoaAZoCWgPQwhagSGrW73kv5SGlFKUaBVLMmgWR0C4ijpEc81XdX2UKGgGaAloD0MIAmcpWU4C/7+UhpRSlGgVSzJoFkdAuIoR9y925nV9lChoBmgJaA9DCEEqxY7GIfi/lIaUUpRoFUsyaBZHQLiJ8UOd5IJ1fZQoaAZoCWgPQwgEH4MVp9rrv5SGlFKUaBVLMmgWR0C4idC4jKPodX2UKGgGaAloD0MIqDrkZrhB87+UhpRSlGgVSzJoFkdAuIs1OwgTy3V9lChoBmgJaA9DCKnBNAwfkfK/lIaUUpRoFUsyaBZHQLiLDPqcEvF1fZQoaAZoCWgPQwjs3/WZs77lv5SGlFKUaBVLMmgWR0C4iuw7HQyAdX2UKGgGaAloD0MInE6y1eWU7b+UhpRSlGgVSzJoFkdAuIrLmOlwcnV9lChoBmgJaA9DCPMhqBq9GuS/lIaUUpRoFUsyaBZHQLiML2EkB0Z1fZQoaAZoCWgPQwjAJmvUQ/Twv5SGlFKUaBVLMmgWR0C4jAbx7RfGdX2UKGgGaAloD0MIZ0P+mUE8+L+UhpRSlGgVSzJoFkdAuIvmCz1K5HV9lChoBmgJaA9DCLGIYYcxafa/lIaUUpRoFUsyaBZHQLiLxVx0dR11fZQoaAZoCWgPQwgoLVxWYXPxv5SGlFKUaBVLMmgWR0C4jThC2MKkdX2UKGgGaAloD0MIw4L7AQ8M97+UhpRSlGgVSzJoFkdAuI0P2wmmcnV9lChoBmgJaA9DCI2Y2ecxyuW/lIaUUpRoFUsyaBZHQLiM7vL5h0B1fZQoaAZoCWgPQwjDLLRzmoXwv5SGlFKUaBVLMmgWR0C4jM6IacZtdX2UKGgGaAloD0MIuamB5nNu/b+UhpRSlGgVSzJoFkdAuI3T+85CGHV9lChoBmgJaA9DCPYn8bkTrPu/lIaUUpRoFUsyaBZHQLiNqv3ai9J1fZQoaAZoCWgPQwheL00R4DTxv5SGlFKUaBVLMmgWR0C4jYmc8TzvdX2UKGgGaAloD0MIaEEo7+Po8b+UhpRSlGgVSzJoFkdAuI1oieNDMXV9lChoBmgJaA9DCJIiMqziDf6/lIaUUpRoFUsyaBZHQLiOUPJ7sv91fZQoaAZoCWgPQwjJrUm3JTL4v5SGlFKUaBVLMmgWR0C4jifqTr3TdX2UKGgGaAloD0MImkLnNXbJ8b+UhpRSlGgVSzJoFkdAuI4GdvsJIHV9lChoBmgJaA9DCOP/jqhQPQDAlIaUUpRoFUsyaBZHQLiN5TDO1OV1fZQoaAZoCWgPQwig+3Jmu4Lwv5SGlFKUaBVLMmgWR0C4jtp9uxbCdX2UKGgGaAloD0MIuY5xxcXR97+UhpRSlGgVSzJoFkdAuI6x3wCr93V9lChoBmgJaA9DCMr8o2/S9PK/lIaUUpRoFUsyaBZHQLiOkJ4jbBZ1fZQoaAZoCWgPQwhJgQUwZeD4v5SGlFKUaBVLMmgWR0C4jm9wvQF+dX2UKGgGaAloD0MI4uR+h6KA+b+UhpRSlGgVSzJoFkdAuI9tDWsijnV9lChoBmgJaA9DCHkCYadYNei/lIaUUpRoFUsyaBZHQLiPQ/5Lytp1fZQoaAZoCWgPQwjZ0M3+QLn1v5SGlFKUaBVLMmgWR0C4jyLo8p1BdX2UKGgGaAloD0MIK2owDcPHA8CUhpRSlGgVSzJoFkdAuI8CIgvDg3V9lChoBmgJaA9DCHXIzXADvvW/lIaUUpRoFUsyaBZHQLiP8I91U2l1fZQoaAZoCWgPQwhiLqnabsL7v5SGlFKUaBVLMmgWR0C4j8ebd8ArdX2UKGgGaAloD0MI9SwI5X08AsCUhpRSlGgVSzJoFkdAuI+mNT987nV9lChoBmgJaA9DCOEnDqDfd/e/lIaUUpRoFUsyaBZHQLiPhQd0aIh1fZQoaAZoCWgPQwiXOsjrwWTxv5SGlFKUaBVLMmgWR0C4kHDKkl/pdX2UKGgGaAloD0MImntI+N7/AMCUhpRSlGgVSzJoFkdAuJBHsu3+dnV9lChoBmgJaA9DCLFPAMXIEvm/lIaUUpRoFUsyaBZHQLiQJkxREWt1fZQoaAZoCWgPQwiGcw0zNH4AwJSGlFKUaBVLMmgWR0C4kAUMb3oLdX2UKGgGaAloD0MIW0I+6Nns97+UhpRSlGgVSzJoFkdAuJDuekHlfnV9lChoBmgJaA9DCEOqKF5lbfO/lIaUUpRoFUsyaBZHQLiQxVuJk5J1fZQoaAZoCWgPQwiJmujzUQb7v5SGlFKUaBVLMmgWR0C4kKQjyFwldX2UKGgGaAloD0MIQj9Tr1uE+L+UhpRSlGgVSzJoFkdAuJCDBO58SnV9lChoBmgJaA9DCLq8OVyr/fW/lIaUUpRoFUsyaBZHQLiRY4+r2g51fZQoaAZoCWgPQwgVjErqBHTxv5SGlFKUaBVLMmgWR0C4kTqwpvxZdX2UKGgGaAloD0MIW1t4Xio28r+UhpRSlGgVSzJoFkdAuJEZSaVlgHV9lChoBmgJaA9DCG1vtyQH7PW/lIaUUpRoFUsyaBZHQLiQ+BlcyFh1fZQoaAZoCWgPQwhIowIn20D5v5SGlFKUaBVLMmgWR0C4kfIKIBRydX2UKGgGaAloD0MIoYUEjC5v/b+UhpRSlGgVSzJoFkdAuJHJLOAy23V9lChoBmgJaA9DCDI89rNYivq/lIaUUpRoFUsyaBZHQLiRp/cFhXt1fZQoaAZoCWgPQwj7Xdiarfzzv5SGlFKUaBVLMmgWR0C4kYbnHNordX2UKGgGaAloD0MIJgFqatla9b+UhpRSlGgVSzJoFkdAuJKGq6vq1XV9lChoBmgJaA9DCF8NUBpqlPS/lIaUUpRoFUsyaBZHQLiSXazNUwV1fZQoaAZoCWgPQwglzoqoiV4EwJSGlFKUaBVLMmgWR0C4kjy2x6fKdX2UKGgGaAloD0MIRyBe1y/Y3L+UhpRSlGgVSzJoFkdAuJIbjghr33V9lChoBmgJaA9DCAFPWrisgvK/lIaUUpRoFUsyaBZHQLiTDjQzDXR1fZQoaAZoCWgPQwj8UGnEzD7hv5SGlFKUaBVLMmgWR0C4kuVFpfx+dX2UKGgGaAloD0MISREZVvEmAMCUhpRSlGgVSzJoFkdAuJLD/6wdKnV9lChoBmgJaA9DCHnou1tZIua/lIaUUpRoFUsyaBZHQLiSouNgjQl1fZQoaAZoCWgPQwhnQ/6ZQfzqv5SGlFKUaBVLMmgWR0C4k5CZrpJPdX2UKGgGaAloD0MIS3hCrz8J/L+UhpRSlGgVSzJoFkdAuJNnnvDxb3V9lChoBmgJaA9DCOW2fY/6K/K/lIaUUpRoFUsyaBZHQLiTRkzXSSh1fZQoaAZoCWgPQwgGEhQ/xhzwv5SGlFKUaBVLMmgWR0C4kyUT6BRRdX2UKGgGaAloD0MIfh6jPPNy6b+UhpRSlGgVSzJoFkdAuJQZqKxcFHV9lChoBmgJaA9DCLnH0ocuaPa/lIaUUpRoFUsyaBZHQLiT8MKTjed1fZQoaAZoCWgPQwidZKvLKYHsv5SGlFKUaBVLMmgWR0C4k8+AiFCcdX2UKGgGaAloD0MI9l0R/G8l77+UhpRSlGgVSzJoFkdAuJOugGr0a3V9lChoBmgJaA9DCA3jbhCtFfG/lIaUUpRoFUsyaBZHQLiUpuJ1q351fZQoaAZoCWgPQwjJ5qp5jgj2v5SGlFKUaBVLMmgWR0C4lH4PK+zudX2UKGgGaAloD0MIbmx2pPrO47+UhpRSlGgVSzJoFkdAuJRc0ygwoXV9lChoBmgJaA9DCNsV+mAZW/i/lIaUUpRoFUsyaBZHQLiUO8UEgW91fZQoaAZoCWgPQwi8r8qFyr/nv5SGlFKUaBVLMmgWR0C4lTWq94/vdX2UKGgGaAloD0MIq3XicrwC6b+UhpRSlGgVSzJoFkdAuJUM4Otnw3V9lChoBmgJaA9DCO8AT1q4LO6/lIaUUpRoFUsyaBZHQLiU69C/oJR1fZQoaAZoCWgPQwiCdLFppRD3v5SGlFKUaBVLMmgWR0C4lMq5TZQIdX2UKGgGaAloD0MIYAMixJVz+r+UhpRSlGgVSzJoFkdAuJW7E5yU93V9lChoBmgJaA9DCH5xqUpbHPS/lIaUUpRoFUsyaBZHQLiVkmqYJE91fZQoaAZoCWgPQwiuRnalZWT6v5SGlFKUaBVLMmgWR0C4lXGEPDpDdX2UKGgGaAloD0MIUcB2MGIf9b+UhpRSlGgVSzJoFkdAuJVQlZ5iVnV9lChoBmgJaA9DCDIfEOhM2uy/lIaUUpRoFUsyaBZHQLiWU4dp7C11fZQoaAZoCWgPQwgKoYMu4VD3v5SGlFKUaBVLMmgWR0C4liqcqe9SdX2UKGgGaAloD0MIJUBNLVtr5L+UhpRSlGgVSzJoFkdAuJYJWilBQnV9lChoBmgJaA9DCGxDxTh/k/y/lIaUUpRoFUsyaBZHQLiV6I+GGmF1fZQoaAZoCWgPQwipvvOLEvTqv5SGlFKUaBVLMmgWR0C4ltie7L+xdX2UKGgGaAloD0MIu38sRIfAAcCUhpRSlGgVSzJoFkdAuJavrxAjZHV9lChoBmgJaA9DCJqy0w/qYvK/lIaUUpRoFUsyaBZHQLiWjmfoRqZ1fZQoaAZoCWgPQwiYUSy3tBruv5SGlFKUaBVLMmgWR0C4lm04BFNMdX2UKGgGaAloD0MI7+L9uP3y57+UhpRSlGgVSzJoFkdAuJeHZ39rGnV9lChoBmgJaA9DCLIubqMBvP6/lIaUUpRoFUsyaBZHQLiXX4rSVnp1fZQoaAZoCWgPQwgB4Niz53Lwv5SGlFKUaBVLMmgWR0C4lz6sp5NXdX2UKGgGaAloD0MIOxvyzwzi97+UhpRSlGgVSzJoFkdAuJcdvze41HV9lChoBmgJaA9DCORp+YGrfPa/lIaUUpRoFUsyaBZHQLiYjXrMTvl1fZQoaAZoCWgPQwgv98lRgKjxv5SGlFKUaBVLMmgWR0C4mGUT6BRRdX2UKGgGaAloD0MIRl9BmrFo87+UhpRSlGgVSzJoFkdAuJhE8+zMR3V9lChoBmgJaA9DCJkprb8lgPq/lIaUUpRoFUsyaBZHQLiYJDlo11p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.2342116236686707, "std_reward": 0.4169808789171875, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-26T16:31:07.826084"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d61548beb779f6b53ca0ae89b949f34168cbbb9341ced540205fd6bd44db6ee9
|
3 |
size 2387
|