yingmanji commited on
Commit
7af97a8
1 Parent(s): bd4fe02

Upload InternLMForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./internlm-7b-v2",
3
+ "architectures": [
4
+ "InternLMForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internlm.InternLMConfig",
8
+ "AutoModel": "modeling_internlm.InternLMModel",
9
+ "AutoModelForCausalLM": "modeling_internlm.InternLMForCausalLM"
10
+ },
11
+ "bias": true,
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 11008,
18
+ "max_position_embeddings": 2048,
19
+ "model_type": "internlm",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "pad_token_id": 2,
23
+ "rms_norm_eps": 1e-06,
24
+ "rotary": {
25
+ "base": 10000,
26
+ "type": "dynamic"
27
+ },
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.38.2",
31
+ "use_cache": true,
32
+ "vocab_size": 103168
33
+ }
configuration_internlm.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
+ The non-linear activation function (function or string) in the decoder.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
56
+ just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the rms normalization layers.
61
+ use_cache (`bool`, *optional*, defaults to `True`):
62
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
63
+ relevant if `config.is_decoder=True`.
64
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ Example:
67
+
68
+ ```python
69
+ >>> from transformers import InternLMModel, InternLMConfig
70
+
71
+ >>> # Initializing a InternLM internlm-7b style configuration
72
+ >>> configuration = InternLMConfig()
73
+
74
+ >>> # Initializing a model from the internlm-7b style configuration
75
+ >>> model = InternLMModel(configuration)
76
+
77
+ >>> # Accessing the model configuration
78
+ >>> configuration = model.config
79
+ ```"""
80
+ model_type = "internlm"
81
+ _auto_class = "AutoConfig"
82
+
83
+ def __init__( # pylint: disable=W0102
84
+ self,
85
+ vocab_size=103168,
86
+ hidden_size=4096,
87
+ intermediate_size=11008,
88
+ num_hidden_layers=32,
89
+ num_attention_heads=32,
90
+ hidden_act="silu",
91
+ max_position_embeddings=2048,
92
+ initializer_range=0.02,
93
+ rms_norm_eps=1e-6,
94
+ use_cache=True,
95
+ pad_token_id=0,
96
+ bos_token_id=1,
97
+ eos_token_id=2,
98
+ tie_word_embeddings=False,
99
+ bias=True,
100
+ rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
101
+ **kwargs,
102
+ ):
103
+ self.vocab_size = vocab_size
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.hidden_size = hidden_size
106
+ self.intermediate_size = intermediate_size
107
+ self.num_hidden_layers = num_hidden_layers
108
+ self.num_attention_heads = num_attention_heads
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.rms_norm_eps = rms_norm_eps
112
+ self.use_cache = use_cache
113
+ self.bias = bias
114
+ self.rotary = rotary
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.38.2"
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2cd07c094cb1e2450ac89548d88527421652b0082bd46d129c3af7a9577cb76
3
+ size 4993850648
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f158bc59efd4a419bcb645f72ede45f3f086368afcd293a677a778ee9cd062e
3
+ size 4981352272
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b71bd304edc8df5ca46716b6ee2a5a142805ef4e868f90549183bd0e45f121c9
3
+ size 4668741432
model.safetensors.index.json ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14643896320
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
27
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
29
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
31
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
33
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
35
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
40
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.10.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
42
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
44
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
45
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
46
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
47
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
53
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.11.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
55
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
57
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
59
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
66
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.12.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
68
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
70
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
72
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
79
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.13.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
81
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
83
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
85
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
92
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.14.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
94
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
96
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
98
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
105
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.15.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
107
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
109
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
111
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
118
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.16.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
120
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
122
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
124
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
131
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.17.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
133
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
135
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
137
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
144
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.18.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
146
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
148
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
150
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.19.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
157
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.19.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
159
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.19.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
161
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
163
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
165
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
166
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
167
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
168
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
169
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
170
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
171
+ "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
172
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
173
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
174
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
175
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
176
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
177
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
183
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.20.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
185
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
187
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
189
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
193
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
195
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
196
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.21.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
198
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
199
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
200
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
201
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
202
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
206
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
209
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
210
+ "model.layers.22.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
211
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
212
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
213
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
214
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
215
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
216
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
217
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
218
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
219
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
220
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
221
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
222
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
223
+ "model.layers.23.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
224
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
226
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
228
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
235
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.24.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
237
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
239
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
241
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
243
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
244
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
245
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
246
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
247
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
248
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
249
+ "model.layers.25.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
250
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
251
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
252
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
253
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
254
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
255
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
256
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
257
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
258
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
259
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
260
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
261
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
262
+ "model.layers.26.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
263
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
264
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
265
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
266
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
267
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
268
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
269
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
270
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
271
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
272
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
273
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
274
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
275
+ "model.layers.27.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
276
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
277
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
278
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
279
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
280
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
281
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
282
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
283
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
284
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
285
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
286
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
287
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
288
+ "model.layers.28.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
289
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
290
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
291
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
292
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
293
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
294
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
295
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
296
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
297
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
298
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
299
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
300
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
301
+ "model.layers.29.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
302
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
303
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
304
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
305
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
306
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
307
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
308
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
309
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
310
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
311
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
312
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
313
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
314
+ "model.layers.3.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
315
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
316
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
317
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
318
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
319
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
320
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
321
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
322
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
323
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
324
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
325
+ "model.layers.30.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
326
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
327
+ "model.layers.30.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
328
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
329
+ "model.layers.30.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
330
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
331
+ "model.layers.30.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
332
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
333
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
334
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
335
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
336
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
337
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
338
+ "model.layers.31.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
339
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
340
+ "model.layers.31.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
341
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
342
+ "model.layers.31.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
343
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
344
+ "model.layers.31.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
345
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
346
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
347
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
348
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
349
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
350
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
351
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
352
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
353
+ "model.layers.4.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
354
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
355
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
356
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
357
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
358
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
359
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
360
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
361
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
362
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
363
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
364
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
365
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
366
+ "model.layers.5.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
367
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
368
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
369
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
370
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
371
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
372
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
373
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
374
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
375
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
376
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
377
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
378
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
379
+ "model.layers.6.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
380
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
381
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
382
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
383
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
384
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
385
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
386
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
387
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
388
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
389
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
390
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
391
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
392
+ "model.layers.7.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
393
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
394
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
395
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
396
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
397
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
398
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
399
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
400
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
401
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
402
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
403
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
404
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
405
+ "model.layers.8.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
406
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
407
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
408
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
409
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
410
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
411
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
412
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
413
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
414
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
415
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
416
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
417
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
418
+ "model.layers.9.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
419
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
420
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
421
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
422
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
423
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
424
+ "model.norm.weight": "model-00003-of-00003.safetensors"
425
+ }
426
+ }
modeling_internlm.py ADDED
@@ -0,0 +1,1103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch InternLM model."""
21
+ import math
22
+ import queue
23
+ import threading
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ SequenceClassifierOutputWithPast,
35
+ )
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+
44
+ try:
45
+ from transformers.generation.streamers import BaseStreamer
46
+ except: # noqa # pylint: disable=bare-except
47
+ BaseStreamer = None
48
+
49
+ from .configuration_internlm import InternLMConfig
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ _CONFIG_FOR_DOC = "InternLMConfig"
54
+
55
+
56
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
57
+ def _make_causal_mask(
58
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
59
+ ):
60
+ """
61
+ Make causal mask used for bi-directional self-attention.
62
+ """
63
+ bsz, tgt_len = input_ids_shape
64
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
65
+ mask_cond = torch.arange(mask.size(-1), device=device)
66
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
67
+ mask = mask.to(dtype)
68
+
69
+ if past_key_values_length > 0:
70
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
71
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
72
+
73
+
74
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
75
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
76
+ """
77
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
78
+ """
79
+ bsz, src_len = mask.size()
80
+ tgt_len = tgt_len if tgt_len is not None else src_len
81
+
82
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
83
+
84
+ inverted_mask = 1.0 - expanded_mask
85
+
86
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
+
88
+
89
+ class InternLMRMSNorm(nn.Module):
90
+ """RMSNorm implemention."""
91
+
92
+ def __init__(self, hidden_size, eps=1e-6):
93
+ """
94
+ InternLMRMSNorm is equivalent to T5LayerNorm
95
+ """
96
+ super().__init__()
97
+ self.weight = nn.Parameter(torch.ones(hidden_size))
98
+ self.variance_epsilon = eps
99
+
100
+ def forward(self, hidden_states):
101
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
102
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
103
+
104
+ # convert into half-precision if necessary
105
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
106
+ hidden_states = hidden_states.to(self.weight.dtype)
107
+
108
+ return self.weight * hidden_states
109
+
110
+
111
+ class InternLMRotaryEmbedding(torch.nn.Module):
112
+ """Implement InternLM's rotary embedding.
113
+
114
+ Args:
115
+ dim (int): Characteristic dimension of each self-attentional head.
116
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
117
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
118
+ device (Any, optional): Running device. Defaults to None.
119
+ """
120
+
121
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
122
+ super().__init__()
123
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self.max_seq_len_cached = max_position_embeddings
128
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
129
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
130
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
131
+ emb = torch.cat((freqs, freqs), dim=-1)
132
+ self.register_buffer("cos_cached", emb.cos().to(torch.float32), persistent=False)
133
+ self.register_buffer("sin_cached", emb.sin().to(torch.float32), persistent=False)
134
+
135
+ def forward(self, x, seq_len=None):
136
+ # x: [bs, num_attention_heads, seq_len, head_size]
137
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
138
+ if seq_len > self.max_seq_len_cached:
139
+ self.max_seq_len_cached = seq_len
140
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
141
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
142
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
143
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
144
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
145
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
146
+ return (
147
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
148
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
149
+ )
150
+
151
+
152
+ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
153
+ """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
154
+
155
+ Args:
156
+ dim (int): Characteristic dimension of each self-attentional head.
157
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
158
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
159
+ device (Any, optional): Running device. Defaults to None.
160
+ scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
161
+ """
162
+
163
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
164
+ super().__init__()
165
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
166
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
167
+ self.dim = dim
168
+ self.base = base
169
+ self.scaling_factor = scaling_factor
170
+
171
+ # Build here to make `torch.jit.trace` work.
172
+ self.max_position_embeddings = max_position_embeddings
173
+ self.max_seq_len_cached = max_position_embeddings
174
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
175
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
176
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
177
+ emb = torch.cat((freqs, freqs), dim=-1)
178
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
179
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
180
+
181
+ def _update_cached(self, x, seq_len=None):
182
+ self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
183
+ if seq_len > self.max_position_embeddings:
184
+ base = self.base * (
185
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
186
+ ) ** (self.dim / (self.dim - 2))
187
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
188
+ else:
189
+ inv_freq = self.inv_freq
190
+ t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
191
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
192
+ emb = torch.cat((freqs, freqs), dim=-1)
193
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
194
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
195
+
196
+ def forward(self, x, seq_len=None):
197
+ # x: [bs, num_attention_heads, seq_len, head_size]
198
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
199
+ if seq_len <= self.max_position_embeddings:
200
+ # Reset the tables if the sequence length has changed,
201
+ if self.max_seq_len_cached > self.max_position_embeddings:
202
+ self._update_cached(x, seq_len)
203
+ else:
204
+ self._update_cached(x, seq_len)
205
+
206
+ return (
207
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
208
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
209
+ )
210
+
211
+
212
+ def rotate_half(x):
213
+ """Rotates half the hidden dims of the input."""
214
+ x1 = x[..., : x.shape[-1] // 2]
215
+ x2 = x[..., x.shape[-1] // 2 :]
216
+ return torch.cat((-x2, x1), dim=-1)
217
+
218
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
219
+ if position_ids.size(1) == 1:
220
+ q_cos = cos[position_ids].unsqueeze(1).expand(q.shape)
221
+ q_sin = sin[position_ids].unsqueeze(1).expand(q.shape)
222
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
223
+
224
+ position_ids = position_ids.flatten() + 1
225
+ #max_length = max(position_ids)
226
+ max_length = k.size(-2)
227
+ position_ids = torch.stack([torch.cat([torch.ones(max_length - w, dtype=torch.long), torch.arange(w)]) for w in position_ids])
228
+ k_cos = cos[position_ids].unsqueeze(1).expand(k.shape)
229
+ k_sin = sin[position_ids].unsqueeze(1).expand(k.shape)
230
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
231
+ else:
232
+ cos = cos[position_ids].unsqueeze(1).expand(q.shape)
233
+ sin = sin[position_ids].unsqueeze(1).expand(q.shape)
234
+ q_embed = (q * cos) + (rotate_half(q) * sin)
235
+ k_embed = (k * cos) + (rotate_half(k) * sin)
236
+ return q_embed, k_embed
237
+
238
+
239
+ class InternLMMLP(nn.Module):
240
+ def __init__(
241
+ self,
242
+ hidden_size: int,
243
+ intermediate_size: int,
244
+ hidden_act: str,
245
+ ):
246
+ super().__init__()
247
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
248
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
249
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
250
+ self.act_fn = ACT2FN[hidden_act]
251
+
252
+ def forward(self, x):
253
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
254
+
255
+
256
+ class InternLMAttention(nn.Module):
257
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
258
+
259
+ def __init__(self, config: InternLMConfig):
260
+ super().__init__()
261
+ self.config = config
262
+ self.hidden_size = config.hidden_size
263
+ self.num_heads = config.num_attention_heads
264
+ self.head_dim = self.hidden_size // self.num_heads
265
+ self.max_position_embeddings = config.max_position_embeddings
266
+
267
+ if (self.head_dim * self.num_heads) != self.hidden_size:
268
+ raise ValueError(
269
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
270
+ f" and `num_heads`: {self.num_heads})."
271
+ )
272
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
273
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
274
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
275
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
276
+ self.rotary_emb = self._init_rope()
277
+
278
+ def _init_rope(self):
279
+ if self.config.rotary["type"] == "origin":
280
+ self.rotary_emb = InternLMRotaryEmbedding(
281
+ self.head_dim,
282
+ max_position_embeddings=self.max_position_embeddings,
283
+ base=self.config.rotary["base"],
284
+ )
285
+ elif self.config.rotary["type"] == "dynamic":
286
+ self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
287
+ self.head_dim,
288
+ max_position_embeddings=self.max_position_embeddings,
289
+ base=self.config.rotary["base"],
290
+ scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
291
+ )
292
+ else:
293
+ raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
294
+ return self.rotary_emb
295
+
296
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
297
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
298
+
299
+ def forward(
300
+ self,
301
+ hidden_states: torch.Tensor,
302
+ attention_mask: Optional[torch.Tensor] = None,
303
+ position_ids: Optional[torch.LongTensor] = None,
304
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
305
+ output_attentions: bool = False,
306
+ use_cache: bool = False,
307
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
308
+ bsz, q_len, _ = hidden_states.size()
309
+
310
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
311
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
312
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
313
+
314
+ if past_key_value is not None:
315
+ # reuse k, v, self_attention
316
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
317
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
318
+
319
+ past_key_value = (key_states, value_states) if use_cache else None
320
+
321
+ kv_seq_len = key_states.shape[-2]
322
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
323
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
324
+
325
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
326
+
327
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
328
+ raise ValueError(
329
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
330
+ f" {attn_weights.size()}"
331
+ )
332
+
333
+ if attention_mask is not None:
334
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
335
+ raise ValueError(
336
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
337
+ )
338
+ attn_weights = attn_weights + attention_mask
339
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
340
+
341
+ # upcast attention to fp32
342
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
343
+ attn_output = torch.matmul(attn_weights, value_states)
344
+
345
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
346
+ raise ValueError(
347
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
348
+ f" {attn_output.size()}"
349
+ )
350
+
351
+ attn_output = attn_output.transpose(1, 2)
352
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
353
+
354
+ attn_output = self.o_proj(attn_output)
355
+
356
+ if not output_attentions:
357
+ attn_weights = None
358
+
359
+ return attn_output, attn_weights, past_key_value
360
+
361
+
362
+ class InternLMDecoderLayer(nn.Module):
363
+ def __init__(self, config: InternLMConfig):
364
+ super().__init__()
365
+ self.hidden_size = config.hidden_size
366
+ self.self_attn = InternLMAttention(config=config)
367
+ self.mlp = InternLMMLP(
368
+ hidden_size=self.hidden_size,
369
+ intermediate_size=config.intermediate_size,
370
+ hidden_act=config.hidden_act,
371
+ )
372
+ self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
373
+ self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
374
+
375
+ def forward(
376
+ self,
377
+ hidden_states: torch.Tensor,
378
+ attention_mask: Optional[torch.Tensor] = None,
379
+ position_ids: Optional[torch.LongTensor] = None,
380
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
381
+ output_attentions: Optional[bool] = False,
382
+ use_cache: Optional[bool] = False,
383
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
384
+ """
385
+ Args:
386
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
387
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
388
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
389
+ output_attentions (`bool`, *optional*):
390
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
391
+ returned tensors for more detail.
392
+ use_cache (`bool`, *optional*):
393
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
394
+ (see `past_key_values`).
395
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
396
+ """
397
+
398
+ residual = hidden_states
399
+
400
+ hidden_states = self.input_layernorm(hidden_states)
401
+
402
+ # Self Attention
403
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
404
+ hidden_states=hidden_states,
405
+ attention_mask=attention_mask,
406
+ position_ids=position_ids,
407
+ past_key_value=past_key_value,
408
+ output_attentions=output_attentions,
409
+ use_cache=use_cache,
410
+ )
411
+ hidden_states = residual + hidden_states
412
+
413
+ # Fully Connected
414
+ residual = hidden_states
415
+ hidden_states = self.post_attention_layernorm(hidden_states)
416
+ hidden_states = self.mlp(hidden_states)
417
+ hidden_states = residual + hidden_states
418
+
419
+ outputs = (hidden_states,)
420
+
421
+ if output_attentions:
422
+ outputs += (self_attn_weights,)
423
+
424
+ if use_cache:
425
+ outputs += (present_key_value,)
426
+
427
+ return outputs
428
+
429
+
430
+ INTERNLM_START_DOCSTRING = r"""
431
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
432
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
433
+ etc.)
434
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
435
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
436
+ and behavior.
437
+ Parameters:
438
+ config ([`InternLMConfig`]):
439
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
440
+ load the weights associated with the model, only the configuration. Check out the
441
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
442
+ """
443
+
444
+
445
+ @add_start_docstrings(
446
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
447
+ INTERNLM_START_DOCSTRING,
448
+ )
449
+ class InternLMPreTrainedModel(PreTrainedModel):
450
+ config_class = InternLMConfig
451
+ base_model_prefix = "model"
452
+ supports_gradient_checkpointing = True
453
+ _no_split_modules = ["InternLMDecoderLayer"]
454
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
455
+
456
+ def _init_weights(self, module):
457
+ std = self.config.initializer_range
458
+ if isinstance(module, nn.Linear):
459
+ module.weight.data.normal_(mean=0.0, std=std)
460
+ if module.bias is not None:
461
+ module.bias.data.zero_()
462
+ elif isinstance(module, nn.Embedding):
463
+ module.weight.data.normal_(mean=0.0, std=std)
464
+ if module.padding_idx is not None:
465
+ module.weight.data[module.padding_idx].zero_()
466
+
467
+ # def _set_gradient_checkpointing(self, module, value=False):
468
+ # if isinstance(module, InternLMModel):
469
+ # module.gradient_checkpointing = value
470
+
471
+
472
+ INTERNLM_INPUTS_DOCSTRING = r"""
473
+ Args:
474
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
475
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
476
+ it.
477
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
478
+ [`PreTrainedTokenizer.__call__`] for details.
479
+ [What are input IDs?](../glossary#input-ids)
480
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
481
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
482
+ - 1 for tokens that are **not masked**,
483
+ - 0 for tokens that are **masked**.
484
+ [What are attention masks?](../glossary#attention-mask)
485
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
486
+ [`PreTrainedTokenizer.__call__`] for details.
487
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
488
+ `past_key_values`).
489
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
490
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
491
+ information on the default strategy.
492
+ - 1 indicates the head is **not masked**,
493
+ - 0 indicates the head is **masked**.
494
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
495
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
496
+ config.n_positions - 1]`.
497
+ [What are position IDs?](../glossary#position-ids)
498
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
499
+ when `config.use_cache=True`):
500
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
501
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
502
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
503
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
504
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
505
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
506
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
507
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
508
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
509
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
510
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
511
+ model's internal embedding lookup matrix.
512
+ use_cache (`bool`, *optional*):
513
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
514
+ `past_key_values`).
515
+ output_attentions (`bool`, *optional*):
516
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
517
+ tensors for more detail.
518
+ output_hidden_states (`bool`, *optional*):
519
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
520
+ more detail.
521
+ return_dict (`bool`, *optional*):
522
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
523
+ """
524
+
525
+
526
+ @add_start_docstrings(
527
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
528
+ INTERNLM_START_DOCSTRING,
529
+ )
530
+ class InternLMModel(InternLMPreTrainedModel):
531
+ """
532
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
533
+ Args:
534
+ config: InternLMConfig
535
+ """
536
+
537
+ _auto_class = "AutoModel"
538
+
539
+ def __init__(self, config: InternLMConfig):
540
+ super().__init__(config)
541
+ self.padding_idx = config.pad_token_id
542
+ self.vocab_size = config.vocab_size
543
+
544
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
545
+ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
546
+ self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
547
+
548
+ self.gradient_checkpointing = False
549
+ # Initialize weights and apply final processing
550
+ self.post_init()
551
+
552
+ def get_input_embeddings(self):
553
+ return self.embed_tokens
554
+
555
+ def set_input_embeddings(self, value):
556
+ self.embed_tokens = value
557
+
558
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
559
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
560
+ # create causal mask
561
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
562
+ combined_attention_mask = None
563
+ if input_shape[-1] > 1:
564
+ combined_attention_mask = _make_causal_mask(
565
+ input_shape,
566
+ inputs_embeds.dtype,
567
+ device=inputs_embeds.device,
568
+ past_key_values_length=past_key_values_length,
569
+ )
570
+
571
+ if attention_mask is not None:
572
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
573
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
574
+ inputs_embeds.device
575
+ )
576
+ combined_attention_mask = (
577
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
578
+ )
579
+
580
+ return combined_attention_mask
581
+
582
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
583
+ def forward(
584
+ self,
585
+ input_ids: torch.LongTensor = None,
586
+ attention_mask: Optional[torch.Tensor] = None,
587
+ position_ids: Optional[torch.LongTensor] = None,
588
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
589
+ inputs_embeds: Optional[torch.FloatTensor] = None,
590
+ use_cache: Optional[bool] = None,
591
+ output_attentions: Optional[bool] = None,
592
+ output_hidden_states: Optional[bool] = None,
593
+ return_dict: Optional[bool] = None,
594
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
595
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
596
+ output_hidden_states = (
597
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
598
+ )
599
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
600
+
601
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
602
+
603
+ # retrieve input_ids and inputs_embeds
604
+ if input_ids is not None and inputs_embeds is not None:
605
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
606
+ elif input_ids is not None:
607
+ batch_size, seq_length = input_ids.shape
608
+ elif inputs_embeds is not None:
609
+ batch_size, seq_length, _ = inputs_embeds.shape
610
+ else:
611
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
612
+
613
+ seq_length_with_past = seq_length
614
+ past_key_values_length = 0
615
+
616
+ if past_key_values is not None:
617
+ past_key_values_length = past_key_values[0][0].shape[2]
618
+ seq_length_with_past = seq_length_with_past + past_key_values_length
619
+
620
+ if position_ids is None:
621
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
622
+ position_ids = torch.arange(
623
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
624
+ )
625
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
626
+ else:
627
+ position_ids = position_ids.view(-1, seq_length).long()
628
+
629
+ if inputs_embeds is None:
630
+ inputs_embeds = self.embed_tokens(input_ids)
631
+ # embed positions
632
+ if attention_mask is None:
633
+ attention_mask = torch.ones(
634
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
635
+ )
636
+ attention_mask = self._prepare_decoder_attention_mask(
637
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
638
+ )
639
+
640
+ hidden_states = inputs_embeds
641
+
642
+ if self.gradient_checkpointing and self.training:
643
+ if use_cache:
644
+ logger.warning_once(
645
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
646
+ )
647
+ use_cache = False
648
+
649
+ # decoder layers
650
+ all_hidden_states = () if output_hidden_states else None
651
+ all_self_attns = () if output_attentions else None
652
+ next_decoder_cache = () if use_cache else None
653
+
654
+ for idx, decoder_layer in enumerate(self.layers):
655
+ if output_hidden_states:
656
+ all_hidden_states += (hidden_states,)
657
+
658
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
659
+
660
+ if self.gradient_checkpointing and self.training:
661
+
662
+ def create_custom_forward(module):
663
+ def custom_forward(*inputs):
664
+ # None for past_key_value
665
+ return module(*inputs, output_attentions, None)
666
+
667
+ return custom_forward
668
+
669
+ layer_outputs = torch.utils.checkpoint.checkpoint(
670
+ create_custom_forward(decoder_layer),
671
+ hidden_states,
672
+ attention_mask,
673
+ position_ids,
674
+ None,
675
+ )
676
+ else:
677
+ layer_outputs = decoder_layer(
678
+ hidden_states,
679
+ attention_mask=attention_mask,
680
+ position_ids=position_ids,
681
+ past_key_value=past_key_value,
682
+ output_attentions=output_attentions,
683
+ use_cache=use_cache,
684
+ )
685
+
686
+ hidden_states = layer_outputs[0]
687
+
688
+ if use_cache:
689
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
690
+
691
+ if output_attentions:
692
+ all_self_attns += (layer_outputs[1],)
693
+
694
+ hidden_states = self.norm(hidden_states)
695
+
696
+ # add hidden states from the last decoder layer
697
+ if output_hidden_states:
698
+ all_hidden_states += (hidden_states,)
699
+
700
+ next_cache = next_decoder_cache if use_cache else None
701
+ if not return_dict:
702
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
703
+ return BaseModelOutputWithPast(
704
+ last_hidden_state=hidden_states,
705
+ past_key_values=next_cache,
706
+ hidden_states=all_hidden_states,
707
+ attentions=all_self_attns,
708
+ )
709
+
710
+
711
+ class InternLMForCausalLM(InternLMPreTrainedModel):
712
+ _auto_class = "AutoModelForCausalLM"
713
+
714
+ def __init__(self, config):
715
+ super().__init__(config)
716
+ self.model = InternLMModel(config)
717
+
718
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
719
+
720
+ # Initialize weights and apply final processing
721
+ self.post_init()
722
+
723
+ def get_input_embeddings(self):
724
+ return self.model.embed_tokens
725
+
726
+ def set_input_embeddings(self, value):
727
+ self.model.embed_tokens = value
728
+
729
+ def get_output_embeddings(self):
730
+ return self.lm_head
731
+
732
+ def set_output_embeddings(self, new_embeddings):
733
+ self.lm_head = new_embeddings
734
+
735
+ def set_decoder(self, decoder):
736
+ self.model = decoder
737
+
738
+ def get_decoder(self):
739
+ return self.model
740
+
741
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
742
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
743
+ def forward(
744
+ self,
745
+ input_ids: torch.LongTensor = None,
746
+ attention_mask: Optional[torch.Tensor] = None,
747
+ position_ids: Optional[torch.LongTensor] = None,
748
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
749
+ inputs_embeds: Optional[torch.FloatTensor] = None,
750
+ labels: Optional[torch.LongTensor] = None,
751
+ use_cache: Optional[bool] = None,
752
+ output_attentions: Optional[bool] = None,
753
+ output_hidden_states: Optional[bool] = None,
754
+ return_dict: Optional[bool] = None,
755
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
756
+ r"""
757
+ Args:
758
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
759
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
760
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
761
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
762
+ Returns:
763
+ Example:
764
+ ```python
765
+ >>> from transformers import AutoTokenizer, InternLMForCausalLM
766
+ >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
767
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
768
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
769
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
770
+ >>> # Generate
771
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
772
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
773
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
774
+ ```"""
775
+
776
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
777
+ output_hidden_states = (
778
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
779
+ )
780
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
781
+
782
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
783
+ outputs = self.model(
784
+ input_ids=input_ids,
785
+ attention_mask=attention_mask,
786
+ position_ids=position_ids,
787
+ past_key_values=past_key_values,
788
+ inputs_embeds=inputs_embeds,
789
+ use_cache=use_cache,
790
+ output_attentions=output_attentions,
791
+ output_hidden_states=output_hidden_states,
792
+ return_dict=return_dict,
793
+ )
794
+
795
+ hidden_states = outputs[0]
796
+ logits = self.lm_head(hidden_states)
797
+
798
+ loss = None
799
+ if labels is not None:
800
+ # Shift so that tokens < n predict n
801
+ shift_logits = logits[..., :-1, :].contiguous()
802
+ shift_labels = labels[..., 1:].contiguous()
803
+ # Flatten the tokens
804
+ loss_fct = CrossEntropyLoss()
805
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
806
+ shift_labels = shift_labels.view(-1)
807
+ # Enable model parallelism
808
+ shift_labels = shift_labels.to(shift_logits.device)
809
+ loss = loss_fct(shift_logits, shift_labels)
810
+
811
+ if not return_dict:
812
+ output = (logits,) + outputs[1:]
813
+ return (loss,) + output if loss is not None else output
814
+
815
+ return CausalLMOutputWithPast(
816
+ loss=loss,
817
+ logits=logits,
818
+ past_key_values=outputs.past_key_values,
819
+ hidden_states=outputs.hidden_states,
820
+ attentions=outputs.attentions,
821
+ )
822
+
823
+ def prepare_inputs_for_generation(
824
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
825
+ ):
826
+ if past_key_values:
827
+ input_ids = input_ids[:, -1:]
828
+
829
+ position_ids = kwargs.get("position_ids", None)
830
+ if attention_mask is not None and position_ids is None:
831
+ # create position_ids on the fly for batch generation
832
+ position_ids = attention_mask.long().cumsum(-1) - 1
833
+ position_ids.masked_fill_(attention_mask == 0, 1)
834
+ if past_key_values:
835
+ position_ids = position_ids[:, -1].unsqueeze(-1)
836
+
837
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
838
+ if inputs_embeds is not None and past_key_values is None:
839
+ model_inputs = {"inputs_embeds": inputs_embeds}
840
+ else:
841
+ model_inputs = {"input_ids": input_ids}
842
+
843
+ model_inputs.update(
844
+ {
845
+ "position_ids": position_ids,
846
+ "past_key_values": past_key_values,
847
+ "use_cache": kwargs.get("use_cache"),
848
+ "attention_mask": attention_mask,
849
+ }
850
+ )
851
+ return model_inputs
852
+
853
+ @staticmethod
854
+ def _reorder_cache(past_key_values, beam_idx):
855
+ reordered_past = ()
856
+ for layer_past in past_key_values:
857
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
858
+ return reordered_past
859
+
860
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
861
+ prompt = ""
862
+ if meta_instruction:
863
+ prompt += f"""<s><|System|>:{meta_instruction}\n"""
864
+ else:
865
+ prompt += "<s>"
866
+ for record in history:
867
+ prompt += f"""<|User|>:{record[0]}\n<|Bot|>:{record[1]}<eoa>\n"""
868
+ prompt += f"""<|User|>:{query}\n<|Bot|>:"""
869
+ return tokenizer([prompt], return_tensors="pt")
870
+
871
+ @torch.no_grad()
872
+ def chat(
873
+ self,
874
+ tokenizer,
875
+ query: str,
876
+ history: List[Tuple[str, str]] = [],
877
+ streamer: Optional[BaseStreamer] = None,
878
+ max_new_tokens: int = 1024,
879
+ do_sample: bool = True,
880
+ temperature: float = 0.8,
881
+ top_p: float = 0.8,
882
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
883
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
884
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
885
+ **kwargs,
886
+ ):
887
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
888
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
889
+ outputs = self.generate(
890
+ **inputs,
891
+ streamer=streamer,
892
+ max_new_tokens=max_new_tokens,
893
+ do_sample=do_sample,
894
+ temperature=temperature,
895
+ top_p=top_p,
896
+ **kwargs,
897
+ )
898
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
899
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
900
+ response = response.split("<eoa>")[0]
901
+ history = history + [(query, response)]
902
+ return response, history
903
+
904
+ @torch.no_grad()
905
+ def stream_chat(
906
+ self,
907
+ tokenizer,
908
+ query: str,
909
+ history: List[Tuple[str, str]] = [],
910
+ max_new_tokens: int = 1024,
911
+ do_sample: bool = True,
912
+ temperature: float = 0.8,
913
+ top_p: float = 0.8,
914
+ **kwargs,
915
+ ):
916
+ """
917
+ Return a generator in format: (response, history)
918
+ Eg.
919
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
920
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
921
+ """
922
+ if BaseStreamer is None:
923
+ raise ModuleNotFoundError(
924
+ "The version of `transformers` is too low. Please make sure "
925
+ "that you have installed `transformers>=4.28.0`."
926
+ )
927
+
928
+ response_queue = queue.Queue(maxsize=20)
929
+
930
+ class ChatStreamer(BaseStreamer):
931
+ def __init__(self, tokenizer) -> None:
932
+ super().__init__()
933
+ self.tokenizer = tokenizer
934
+ self.queue = response_queue
935
+ self.query = query
936
+ self.history = history
937
+ self.response = ""
938
+ self.received_inputs = False
939
+ self.queue.put((self.response, history + [(self.query, self.response)]))
940
+
941
+ def put(self, value):
942
+ if len(value.shape) > 1 and value.shape[0] > 1:
943
+ raise ValueError("ChatStreamer only supports batch size 1")
944
+ elif len(value.shape) > 1:
945
+ value = value[0]
946
+
947
+ if not self.received_inputs:
948
+ # The first received value is input_ids, ignore here
949
+ self.received_inputs = True
950
+ return
951
+
952
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
953
+ if token.strip() != "<eoa>":
954
+ self.response = self.response + token
955
+ history = self.history + [(self.query, self.response)]
956
+ self.queue.put((self.response, history))
957
+
958
+ def end(self):
959
+ self.queue.put(None)
960
+
961
+ def stream_producer():
962
+ return self.chat(
963
+ tokenizer=tokenizer,
964
+ query=query,
965
+ streamer=ChatStreamer(tokenizer=tokenizer),
966
+ history=history,
967
+ max_new_tokens=max_new_tokens,
968
+ do_sample=do_sample,
969
+ temperature=temperature,
970
+ top_p=top_p,
971
+ **kwargs,
972
+ )
973
+
974
+ def consumer():
975
+ producer = threading.Thread(target=stream_producer)
976
+ producer.start()
977
+ while True:
978
+ res = response_queue.get()
979
+ if res is None:
980
+ return
981
+ yield res
982
+
983
+ return consumer()
984
+
985
+
986
+ @add_start_docstrings(
987
+ """
988
+ The InternLM Model transformer with a sequence classification head on top (linear layer).
989
+ [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
990
+ (e.g. GPT-2) do.
991
+ Since it does classification on the last token, it requires to know the position of the last token. If a
992
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
993
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
994
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
995
+ each row of the batch).
996
+ """,
997
+ INTERNLM_START_DOCSTRING,
998
+ )
999
+ class InternLMForSequenceClassification(InternLMPreTrainedModel):
1000
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1001
+
1002
+ def __init__(self, config):
1003
+ super().__init__(config)
1004
+ self.num_labels = config.num_labels
1005
+ self.model = InternLMModel(config)
1006
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1007
+
1008
+ # Initialize weights and apply final processing
1009
+ self.post_init()
1010
+
1011
+ def get_input_embeddings(self):
1012
+ return self.model.embed_tokens
1013
+
1014
+ def set_input_embeddings(self, value):
1015
+ self.model.embed_tokens = value
1016
+
1017
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
1018
+ def forward(
1019
+ self,
1020
+ input_ids: torch.LongTensor = None,
1021
+ attention_mask: Optional[torch.Tensor] = None,
1022
+ position_ids: Optional[torch.LongTensor] = None,
1023
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1024
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1025
+ labels: Optional[torch.LongTensor] = None,
1026
+ use_cache: Optional[bool] = None,
1027
+ output_attentions: Optional[bool] = None,
1028
+ output_hidden_states: Optional[bool] = None,
1029
+ return_dict: Optional[bool] = None,
1030
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1031
+ r"""
1032
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1033
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1034
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1035
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1036
+ """
1037
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1038
+
1039
+ transformer_outputs = self.model(
1040
+ input_ids,
1041
+ attention_mask=attention_mask,
1042
+ position_ids=position_ids,
1043
+ past_key_values=past_key_values,
1044
+ inputs_embeds=inputs_embeds,
1045
+ use_cache=use_cache,
1046
+ output_attentions=output_attentions,
1047
+ output_hidden_states=output_hidden_states,
1048
+ return_dict=return_dict,
1049
+ )
1050
+ hidden_states = transformer_outputs[0]
1051
+ logits = self.score(hidden_states)
1052
+
1053
+ if input_ids is not None:
1054
+ batch_size = input_ids.shape[0]
1055
+ else:
1056
+ batch_size = inputs_embeds.shape[0]
1057
+
1058
+ if self.config.pad_token_id is None and batch_size != 1:
1059
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1060
+ if self.config.pad_token_id is None:
1061
+ sequence_lengths = -1
1062
+ else:
1063
+ if input_ids is not None:
1064
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1065
+ else:
1066
+ sequence_lengths = -1
1067
+
1068
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1069
+
1070
+ loss = None
1071
+ if labels is not None:
1072
+ labels = labels.to(logits.device)
1073
+ if self.config.problem_type is None:
1074
+ if self.num_labels == 1:
1075
+ self.config.problem_type = "regression"
1076
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1077
+ self.config.problem_type = "single_label_classification"
1078
+ else:
1079
+ self.config.problem_type = "multi_label_classification"
1080
+
1081
+ if self.config.problem_type == "regression":
1082
+ loss_fct = MSELoss()
1083
+ if self.num_labels == 1:
1084
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1085
+ else:
1086
+ loss = loss_fct(pooled_logits, labels)
1087
+ elif self.config.problem_type == "single_label_classification":
1088
+ loss_fct = CrossEntropyLoss()
1089
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1090
+ elif self.config.problem_type == "multi_label_classification":
1091
+ loss_fct = BCEWithLogitsLoss()
1092
+ loss = loss_fct(pooled_logits, labels)
1093
+ if not return_dict:
1094
+ output = (pooled_logits,) + transformer_outputs[1:]
1095
+ return ((loss,) + output) if loss is not None else output
1096
+
1097
+ return SequenceClassifierOutputWithPast(
1098
+ loss=loss,
1099
+ logits=pooled_logits,
1100
+ past_key_values=transformer_outputs.past_key_values,
1101
+ hidden_states=transformer_outputs.hidden_states,
1102
+ attentions=transformer_outputs.attentions,
1103
+ )