Create Train your own codexchan checkpoint if you prefer using this.py
Browse files
Train your own codexchan checkpoint if you prefer using this.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#this script will let you train your own distillgpt checkpoint or fine tune the one in checkpoint-4000
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling
|
5 |
+
from transformers import Trainer, TrainingArguments, TrainerCallback # Added TrainerCallback here
|
6 |
+
from datasets import load_dataset
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
# Data preparation
|
10 |
+
data_dir = r"https://github.com/zrebarchak/Codexchan.exe-Archive"
|
11 |
+
#
|
12 |
+
"""replace this with folder of txt files
|
13 |
+
the github link This is the base dataset. it includes all of codexchan's videos where they spoke.
|
14 |
+
theres nothing wrong with the errored folder, you should combine it-
|
15 |
+
and train on them both fom . note that this dataset doesnt include the faq
|
16 |
+
(https://etherpad.mit.edu/p/r.46c0a7842e569d53dc22b44afed6bc40)
|
17 |
+
or this https://www.onlinegdb.com/fork/IrQRJkyX0
|
18 |
+
also note checkpoint-4000 was not trained on these either, just this base dataset. have fun!"""
|
19 |
+
#
|
20 |
+
dataset = load_dataset("text", data_files=os.path.join(data_dir, "*.txt"))
|
21 |
+
|
22 |
+
# Model and tokenizer setup
|
23 |
+
model_name = "distilgpt2"
|
24 |
+
base_output_dir = "./distilgpt2-fine-tuned"
|
25 |
+
|
26 |
+
# Generate a unique name for this training run
|
27 |
+
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
28 |
+
output_dir = os.path.join(base_output_dir, f"distilgpt2_continuous_{current_time}")
|
29 |
+
|
30 |
+
# Function to find the most recent model directory
|
31 |
+
def find_most_recent_model(base_dir):
|
32 |
+
if not os.path.exists(base_dir):
|
33 |
+
return None
|
34 |
+
subdirs = [os.path.join(base_dir, d) for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))]
|
35 |
+
valid_dirs = [d for d in subdirs if os.path.exists(os.path.join(d, 'config.json'))]
|
36 |
+
return max(valid_dirs, key=os.path.getmtime) if valid_dirs else None
|
37 |
+
|
38 |
+
most_recent_dir = find_most_recent_model(base_output_dir)
|
39 |
+
|
40 |
+
if most_recent_dir:
|
41 |
+
print(f"Loading most recent saved model from: {most_recent_dir}")
|
42 |
+
try:
|
43 |
+
model = GPT2LMHeadModel.from_pretrained(most_recent_dir)
|
44 |
+
tokenizer = GPT2Tokenizer.from_pretrained(most_recent_dir)
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error loading saved model: {e}")
|
47 |
+
print("Starting with fresh model instead.")
|
48 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
49 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
50 |
+
else:
|
51 |
+
print("No valid saved model found. Starting with fresh model...")
|
52 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
53 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
54 |
+
|
55 |
+
tokenizer.pad_token = tokenizer.eos_token
|
56 |
+
model.config.pad_token_id = model.config.eos_token_id
|
57 |
+
|
58 |
+
# Tokenize the dataset
|
59 |
+
def tokenize_function(examples):
|
60 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
61 |
+
|
62 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
63 |
+
|
64 |
+
# Training arguments
|
65 |
+
training_args = TrainingArguments(
|
66 |
+
output_dir=output_dir,
|
67 |
+
overwrite_output_dir=True,
|
68 |
+
per_device_train_batch_size=1,
|
69 |
+
gradient_accumulation_steps=4,
|
70 |
+
save_steps=1000,
|
71 |
+
save_total_limit=5,
|
72 |
+
fp16=True,
|
73 |
+
gradient_checkpointing=True,
|
74 |
+
learning_rate=1e-4,
|
75 |
+
warmup_steps=100,
|
76 |
+
logging_steps=10, # Log more frequently
|
77 |
+
max_steps=-1, # No limit on the number of steps
|
78 |
+
num_train_epochs=215, # This will be ignored due to max_steps=-1
|
79 |
+
)
|
80 |
+
|
81 |
+
# Custom callback to print progress
|
82 |
+
class ProgressCallback(TrainerCallback):
|
83 |
+
def __init__(self, total_steps=1000000): # A large number, but not so large it causes display issues
|
84 |
+
self.total_steps = total_steps
|
85 |
+
|
86 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
87 |
+
if state.global_step % 10 == 0: # Print every 10 steps
|
88 |
+
print(f"Step: {state.global_step}/{self.total_steps} - Loss: {logs.get('loss', 'N/A'):.4f}")
|
89 |
+
|
90 |
+
# Trainer setup
|
91 |
+
trainer = Trainer(
|
92 |
+
model=model,
|
93 |
+
args=training_args,
|
94 |
+
train_dataset=tokenized_dataset["train"],
|
95 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
|
96 |
+
callbacks=[ProgressCallback()]
|
97 |
+
)
|
98 |
+
|
99 |
+
# Enable gradient checkpointing
|
100 |
+
model.gradient_checkpointing_enable()
|
101 |
+
|
102 |
+
# Start training
|
103 |
+
print(f"Starting long-running training. Models will be saved to {output_dir}")
|
104 |
+
print("Press Ctrl+C to stop...")
|
105 |
+
try:
|
106 |
+
trainer.train()
|
107 |
+
except KeyboardInterrupt:
|
108 |
+
print("\nTraining interrupted. Saving model...")
|
109 |
+
trainer.save_model()
|
110 |
+
print(f"Model saved to {output_dir}. You can resume training later by running this script again.")
|
111 |
+
|
112 |
+
print("Training completed or interrupted. Final model saved.")
|