File size: 5,614 Bytes
9965bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
import numpy as np
import torch as th
import torch.distributed as dist
from guided_diffusion import dist_util, midi_util, logger
from guided_diffusion.dit import DiT_models
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_diffusion,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from load_utils import load_model
def main():
args = create_argparser().parse_args()
comm = dist_util.setup_dist(port=args.port)
logger.configure(args=args, comm=comm)
logger.log("creating model and diffusion...")
model = DiT_models[args.model](
input_size=args.image_size,
in_channels=args.in_channels,
num_classes=args.num_classes,
learn_sigma=args.learn_sigma,
)
diffusion = create_diffusion(
learn_sigma=args.learn_sigma,
diffusion_steps=args.diffusion_steps,
noise_schedule=args.noise_schedule,
timestep_respacing=args.timestep_respacing,
use_kl=args.use_kl,
predict_xstart=args.predict_xstart,
rescale_timesteps=args.rescale_timesteps,
rescale_learned_sigmas=args.rescale_learned_sigmas,
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu"), strict=False
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
def model_fn(x, t, y=None):
y_null = th.tensor([args.num_classes] * args.batch_size, device=dist_util.dev())
if args.class_cond:
if args.cfg:
return (1 + args.w) * model(x, t, y) - args.w * model(x, t, y_null)
else:
return model(x, t, y)
else:
return model(x, t, y_null)
# create embed model
embed_model = load_model(args.embed_model_name, args.embed_model_ckpt)
embed_model.to(dist_util.dev())
embed_model.eval()
logger.log("sampling...")
all_images = []
all_labels = []
save_dir = os.path.join(logger.get_dir(), f"gen_cls_{args.class_label}{args.save_name}")
os.makedirs(os.path.expanduser(save_dir), exist_ok=True)
print(save_dir)
while len(all_images) * args.batch_size < args.num_samples:
model_kwargs = {}
if args.class_cond:
# only generate one class
classes = th.ones(size=(args.batch_size,), device=dist_util.dev(), dtype=th.int) * args.class_label
# randomly select classes
# classes = th.randint(
# low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
# )
model_kwargs["y"] = classes
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model_fn,
(args.batch_size, args.in_channels, args.image_size[0], args.image_size[1]),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
device=dist_util.dev(),
progress=True
)
sample = midi_util.decode_sample_for_midi(sample, embed_model=embed_model,
scale_factor=args.scale_factor, threshold=-0.95)
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
if args.class_cond:
gathered_labels = [
th.zeros_like(classes) for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_labels, classes)
all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
logger.log(f"created {len(all_images) * args.batch_size} samples")
arr = np.concatenate(all_images, axis=0)
if arr.shape[-1] == 1: # no pedal, need shape B x 128 x 1024
arr = arr.squeeze(axis=-1)
else: # with pedal, need shape: B x 2 x 128 x 1024
arr = arr.transpose(0, 3, 1, 2)
arr = arr[: args.num_samples]
if args.class_cond:
label_arr = np.concatenate(all_labels, axis=0)
label_arr = label_arr[: args.num_samples]
if dist.get_rank() == 0:
if args.class_cond:
midi_util.save_piano_roll_midi(arr, save_dir, args.fs, y=label_arr)
else:
midi_util.save_piano_roll_midi(arr, save_dir, args.fs)
dist.barrier()
logger.log("sampling complete")
def create_argparser():
defaults = dict(
project="music-sampling",
save_name="", # optional save name to indicate iter
dir="",
model="DiTRotary_XL_8", # DiT model names
embed_model_name='kl/f8-all-onset',
embed_model_ckpt='taming-transformers/checkpoints/all_onset/epoch_14.ckpt',
clip_denoised=False,
num_samples=128,
batch_size=16,
use_ddim=False,
model_path="",
scale_factor=1.,
fs=100,
num_classes=3,
class_label=1, # class to generate
cfg=False,
w=4., # for cfg
training=False,
port=None,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()
|