File size: 10,226 Bytes
9965bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""

import argparse
import os

import numpy as np
import torch as th
import pandas as pd
import torch.distributed as dist
import torch.nn.functional as F
import multiprocessing

from guided_diffusion import dist_util, midi_util, logger
from guided_diffusion.dit import DiT_models
from guided_diffusion.script_util import (
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    add_dict_to_argparser,
    args_to_dict,
    create_classifier,
)
from guided_diffusion.gaussian_diffusion import _encode, _extract_rule
from guided_diffusion.pr_datasets_all import load_data
from load_utils import load_model
import diff_collage as dc
from guided_diffusion.condition_functions import (
    model_fn, dc_model_fn, composite_nn_zt, composite_rule)
from functools import partial
import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (20, 3)
plt.rcParams['figure.dpi'] = 300
plt.rcParams['savefig.dpi'] = 300


def main():
    args = create_argparser().parse_args()
    root_dir = 'cond_table/'
    args.dir = root_dir + os.path.splitext(args.config_path.split(root_dir)[-1])[0] + f'_cls_{args.class_label}'

    comm = dist_util.setup_dist(port=args.port)
    logger.configure(args=args, comm=comm)
    config = midi_util.load_config(args.config_path)
    if config.sampling.use_ddim:
        args.timestep_respacing = config.sampling.timestep_respacing

    logger.log("creating model and diffusion...")
    model, diffusion = create_model_and_diffusion(
        **args_to_dict(args, model_and_diffusion_defaults().keys())
    )
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu"), strict=False
    )
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    # create embed model
    embed_model = None

    cond_fn_config = config.guidance.cond_fn
    if config.guidance.nn:
        logger.log("loading classifier...")
        classifier_config = cond_fn_config.classifiers
        num_classifiers = len(classifier_config.paths)
        classifiers = []
        for i in range(num_classifiers):
            classifier = create_classifier(
                image_size=args.image_size,
                in_channels=args.in_channels,
                classifier_use_fp16=False,
                classifier_width=128,
                classifier_depth=2,
                classifier_attention_resolutions='32,16,8',
                classifier_use_scale_shift_norm=True,
                classifier_resblock_updown=True,
                classifier_pool='attention',
                num_classes=classifier_config.num_classes[i],
                chord=True if 'chord' in cond_fn_config.rule_names[i] else False,
            )
            classifier.load_state_dict(
                dist_util.load_state_dict(classifier_config.paths[i], map_location="cpu")
            )
            classifier.to(dist_util.dev())
            classifier.eval()
            classifiers.append(classifier)

    if cond_fn_config is not None:
        if config.guidance.nn:
            cond_fn_used = partial(composite_nn_zt, fns=cond_fn_config.fns,
                                   classifier_scales=cond_fn_config.classifier_scales,
                                   classifiers=classifiers, rule_names=cond_fn_config.rule_names)
        else:
            cond_fn_used = partial(composite_rule, fns=cond_fn_config.fns,
                                   classifier_scales=cond_fn_config.classifier_scales,
                                   rule_names=cond_fn_config.rule_names)
    else:
        cond_fn_used = None

    if config.sampling.diff_collage:
        def eps_fn(x, t, y=None, half=False):
            # since our backbone takes 128x16 as input
            return model(x.permute(0, 1, 3, 2), t, y=y, half=half).permute(0, 1, 3, 2)

        # circle need one more num_img than linear
        img_shape = (args.in_channels, args.image_size[1], args.image_size[0])  # 4 x 16 x 128
        if config.dc.type == 'circle':
            worker = dc.CondIndCircle(img_shape, eps_fn, config.dc.num_img + 1, overlap_size=config.dc.overlap_size)
        else:
            worker = dc.CondIndSimple(img_shape, eps_fn, config.dc.num_img, overlap_size=config.dc.overlap_size)
        model_long_fn = worker.eps_scalar_t_fn
        gen_shape = (args.batch_size, worker.shape[0], worker.shape[2], worker.shape[1])
        model_fn_used = partial(dc_model_fn, model=model_long_fn, num_classes=args.num_classes,
                                class_cond=args.class_cond, cfg=args.cfg, w=args.w)
    else:
        gen_shape = (args.batch_size, args.in_channels, args.image_size[0], args.image_size[1])
        model_fn_used = partial(model_fn, model=model, num_classes=args.num_classes,
                                class_cond=args.class_cond, cfg=args.cfg, w=args.w)

    if args.class_cond:
        # only generate one class
        classes = th.ones(size=(args.batch_size,), device=dist_util.dev(), dtype=th.int) * args.class_label

    save_dir = logger.get_dir()
    save_dir_gt = os.path.join(save_dir, 'gt')
    os.makedirs(os.path.expanduser(save_dir), exist_ok=True)
    os.makedirs(os.path.expanduser(save_dir_gt), exist_ok=True)

    ddim_stochastic = partial(diffusion.ddim_sample_loop, eta=1.)
    sample_fn = (
        diffusion.p_sample_loop if not config.sampling.use_ddim else ddim_stochastic
    )

    logger.log(f"loading midi from test set cls {args.class_label} to edit...")
    val_data = load_data(
        data_dir=args.data_dir + "_test_cls_" + str(args.class_label) + ".csv",
        batch_size=args.batch_size,
        class_cond=True,
        image_size=gen_shape[2],
        rule=None,
    )

    logger.log("sampling...")
    count_samples = 0
    # target rules are dummy for get editing table
    target_rules = vars(config.target_rules)
    if 'vertical_nd' in target_rules.keys():
        # create a new dummy rule name and delete the old names
        target_rules['note_density_pixel'] = None
        target_rules.pop('vertical_nd')
        target_rules.pop('horizontal_nd')
    model_kwargs = {"rule": {k: v for k, v in target_rules.items()}}
    if args.class_cond:
        model_kwargs["y"] = classes

    all_results = pd.DataFrame()

    while count_samples < args.num_samples:
        with th.no_grad():
            gt, extra = next(val_data)
            gt = gt.to(dist_util.dev())
            for rule_name in target_rules.keys():
                target_rule = _extract_rule(rule_name, gt)
                model_kwargs["rule"][rule_name] = target_rule

        sample = sample_fn(
            model_fn_used,
            gen_shape,
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
            device=dist_util.dev(),
            cond_fn=cond_fn_used,
            # None for NN(z_0), embed_model for rule(decoder(z_0))
            embed_model=embed_model if config.guidance.vae else None,
            scale_factor=args.scale_factor,
            guidance_kwargs=config.guidance,
            scg_kwargs=vars(config.scg) if config.guidance.scg else None,
            t_end=config.sampling.t_end,
            record=args.record,
            progress=True
        )
        sample = midi_util.decode_sample_for_midi(sample, embed_model=embed_model,
                                                  scale_factor=args.scale_factor, threshold=-0.95)
        arr = sample.cpu().numpy()
        arr = arr.transpose(0, 3, 1, 2)
        gt = ((gt + 1) * 63.5).clamp(0, 127).to(th.uint8)
        arr_gt = gt.cpu().numpy()
        if args.save_files:
            if args.class_cond:
                label_arr = classes.cpu().numpy()
                midi_util.save_piano_roll_midi(arr, save_dir, args.fs, y=label_arr, save_ind=count_samples)
                midi_util.save_piano_roll_midi(arr_gt, save_dir_gt, args.fs, y=label_arr, save_ind=count_samples)
            else:
                midi_util.save_piano_roll_midi(arr, save_dir, args.fs, save_ind=count_samples)
                midi_util.save_piano_roll_midi(arr_gt, save_dir_gt, args.fs, save_ind=count_samples)

        # test distance between generated samples and target
        generated_samples = th.from_numpy(arr) / 63.5 - 1
        results = midi_util.eval_rule_loss(generated_samples, model_kwargs["rule"])
        all_results = pd.concat([all_results, results], ignore_index=True)
        # save every step
        if args.save_files:
            all_results.to_csv(os.path.join(save_dir, 'results.csv'), index=False)
        count_samples += args.batch_size

    if args.save_files:
        all_results.to_csv(os.path.join(save_dir, 'results.csv'), index=False)
        # Create the DataFrame for loss_stats
        loss_columns = [col for col in all_results.columns if '.loss' in col]
        rows = []
        for col in loss_columns:
            rows.append({'Attr': col, 'Mean': all_results[col].mean(), 'Std': all_results[col].std()})
        loss_stats = pd.DataFrame(rows, columns=['Attr', 'Mean', 'Std'])
        loss_stats.to_csv(os.path.join(save_dir, 'summary.csv'))
        print(loss_stats)

    logger.log("sampling complete")


def create_argparser():
    defaults = dict(
        project="music-sampling",
        dir="",
        data_dir="",  # use to load in val data to extract rule
        config_path="",
        model="",  # DiT model names
        model_path="",
        clip_denoised=False,
        num_samples=128,
        batch_size=16,
        scale_factor=1.,
        fs=12.5,
        num_classes=0,
        class_label=1,  # class to generate
        cfg=False,
        w=4.,  # for cfg
        classifier_scale=1.0,
        record=False,
        save_files=True,
        training=False,  # not training, so don't need to create more folders than needed
        port=None,
    )
    defaults.update(model_and_diffusion_defaults())
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser


if __name__ == "__main__":
    multiprocessing.set_start_method('spawn', force=True)
    main()