rule-guided-music / scripts /sample_rule.py
yjhuangcd
First commit
9965bf6
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
import numpy as np
import torch as th
import pandas as pd
import torch.distributed as dist
import torch.nn.functional as F
import multiprocessing
from guided_diffusion import dist_util, midi_util, logger
from guided_diffusion.dit import DiT_models
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_diffusion,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from guided_diffusion.gaussian_diffusion import _encode, _extract_rule
from guided_diffusion.pr_datasets_all import load_data
from load_utils import load_model
import diff_collage as dc
from guided_diffusion.condition_functions import (
model_fn, dc_model_fn, composite_nn_zt, composite_rule)
from functools import partial
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20, 3)
plt.rcParams['figure.dpi'] = 300
plt.rcParams['savefig.dpi'] = 300
def main():
args = create_argparser().parse_args()
root_dir = 'cond_demo/'
if 'cond_table/' in args.config_path:
args.dir = root_dir + os.path.splitext(args.config_path.split('cond_table/')[-1])[0] + f'_cls_{args.class_label}'
else:
args.dir = root_dir + os.path.splitext(args.config_path.split(root_dir)[-1])[0] + f'_cls_{args.class_label}'
comm = dist_util.setup_dist(port=args.port)
logger.configure(args=args, comm=comm)
config = midi_util.load_config(args.config_path)
if config.sampling.use_ddim:
args.timestep_respacing = config.sampling.timestep_respacing
logger.log("creating model and diffusion...")
model = DiT_models[args.model](
input_size=args.image_size,
in_channels=args.in_channels,
num_classes=args.num_classes,
learn_sigma=args.learn_sigma,
)
diffusion = create_diffusion(
learn_sigma=args.learn_sigma,
diffusion_steps=args.diffusion_steps,
noise_schedule=args.noise_schedule,
timestep_respacing=args.timestep_respacing,
use_kl=args.use_kl,
predict_xstart=args.predict_xstart,
rescale_timesteps=args.rescale_timesteps,
rescale_learned_sigmas=args.rescale_learned_sigmas,
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu"), strict=False
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
# create embed model
if args.vae is not None:
embed_model = load_model(args.vae, args.vae_path)
embed_model.to(dist_util.dev())
embed_model.eval()
else:
embed_model = None
cond_fn_config = config.guidance.cond_fn
if config.guidance.nn:
logger.log("loading classifier...")
classifier_config = cond_fn_config.classifiers
num_classifiers = len(classifier_config.names)
classifiers = []
for i in range(num_classifiers):
classifier = DiT_models[classifier_config.names[i]](
# classifier trained on latents, so has the same img size as diffusion
input_size=args.image_size,
in_channels=args.in_channels,
num_classes=classifier_config.num_classes[i],
)
classifier.load_state_dict(
dist_util.load_state_dict(classifier_config.paths[i], map_location="cpu")
)
classifier.to(dist_util.dev())
classifier.eval()
classifiers.append(classifier)
if cond_fn_config is not None:
if config.guidance.nn:
cond_fn_used = partial(composite_nn_zt, fns=cond_fn_config.fns,
classifier_scales=cond_fn_config.classifier_scales,
classifiers=classifiers, rule_names=cond_fn_config.rule_names)
else:
cond_fn_used = partial(composite_rule, fns=cond_fn_config.fns,
classifier_scales=cond_fn_config.classifier_scales,
rule_names=cond_fn_config.rule_names)
else:
cond_fn_used = None
if config.sampling.diff_collage:
def eps_fn(x, t, y=None):
# since our backbone takes 128x16 as input
return model(x.permute(0, 1, 3, 2), t, y=y).permute(0, 1, 3, 2)
# circle need one more num_img than linear
img_shape = (args.in_channels, args.image_size[1], args.image_size[0]) # 4 x 16 x 128
if config.dc.type == 'circle':
worker = dc.CondIndCircle(img_shape, eps_fn, config.dc.num_img + 1, overlap_size=config.dc.overlap_size)
else:
worker = dc.CondIndSimple(img_shape, eps_fn, config.dc.num_img, overlap_size=config.dc.overlap_size)
model_long_fn = worker.eps_scalar_t_fn
gen_shape = (args.batch_size, worker.shape[0], worker.shape[2], worker.shape[1])
model_fn_used = partial(dc_model_fn, model=model_long_fn, num_classes=args.num_classes,
class_cond=args.class_cond, cfg=args.cfg, w=args.w)
else:
gen_shape = (args.batch_size, args.in_channels, args.image_size[0], args.image_size[1])
model_fn_used = partial(model_fn, model=model, num_classes=args.num_classes,
class_cond=args.class_cond, cfg=args.cfg, w=args.w)
target_rules = vars(config.target_rules)
source = 'given'
# see if target rules are given, if not, extract from dataset
for key, val in target_rules.items():
if val is None:
source = 'dataset'
break
if source == 'dataset':
if 'vertical_nd' in target_rules.keys():
# create a new dummy rule name and delete the old names
target_rules['note_density'] = None
target_rules.pop('vertical_nd')
target_rules.pop('horizontal_nd')
model_kwargs = {"rule": {k: v for k, v in target_rules.items()}}
logger.log(f"loading midi from test set cls {args.class_label}...")
val_data = load_data(
data_dir=args.data_dir + "_test_cls_" + str(args.class_label) + ".csv",
batch_size=args.batch_size,
class_cond=True,
deterministic=args.record or args.deterministic, # for record, use the same target
image_size=gen_shape[2] * 8,
rule=None,
)
with th.no_grad():
gt, extra = next(val_data)
gt = gt.to(dist_util.dev())
for rule_name in target_rules.keys():
target_rule = _extract_rule(rule_name, gt)
model_kwargs["rule"][rule_name] = target_rule
else:
for key, val in target_rules.items():
if 'vertical_nd' in key:
# to make vertical and horizontal nd to be of similar scale
if '_hr_' in key:
str_hr_scale = key.split('_hr_')[-1]
horizontal_scale = int(str_hr_scale)
horizontal_nd = [x / horizontal_scale for x in target_rules[f'horizontal_nd_hr_{str_hr_scale}']]
target_rules[f'note_density_hr_{str_hr_scale}'] = target_rules[key] + horizontal_nd
else:
horizontal_scale = 5
horizontal_nd = [x / horizontal_scale for x in target_rules['horizontal_nd']]
target_rules['note_density'] = target_rules[key] + horizontal_nd
target_rules.pop(key)
target_rules.pop(key.replace('vertical', 'horizontal'))
break
for key, val in target_rules.items():
val = th.tensor(val, device=dist_util.dev())
if key == 'pitch_hist':
val = val / (th.sum(val) + 1e-12)
target_rules[key] = val
model_kwargs = {"rule": {k: v.repeat(args.batch_size, 1) for k, v in target_rules.items()}}
if args.class_cond:
# only generate one class
classes = th.ones(size=(args.batch_size,), device=dist_util.dev(), dtype=th.int) * args.class_label
model_kwargs["y"] = classes
save_dir = logger.get_dir()
os.makedirs(os.path.expanduser(save_dir), exist_ok=True)
ddim_stochastic = partial(diffusion.ddim_sample_loop, eta=1.)
sample_fn = (
diffusion.p_sample_loop if not config.sampling.use_ddim else ddim_stochastic
)
logger.log("sampling...")
count_samples = 0
all_results = pd.DataFrame()
while count_samples < args.num_samples:
sample = sample_fn(
model_fn_used,
gen_shape,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
device=dist_util.dev(),
cond_fn=cond_fn_used,
# None for NN(z_0), embed_model for rule(decoder(z_0))
embed_model=embed_model if config.guidance.vae else None,
scale_factor=args.scale_factor,
guidance_kwargs=config.guidance,
scg_kwargs=vars(config.scg) if config.guidance.scg else None,
t_end=config.sampling.t_end,
record=args.record,
progress=True
)
sample = midi_util.decode_sample_for_midi(sample, embed_model=embed_model,
scale_factor=args.scale_factor, threshold=-0.95)
arr = sample.cpu().numpy()
arr = arr.transpose(0, 3, 1, 2)
if args.save_files:
if args.class_cond:
label_arr = classes.cpu().numpy()
midi_util.save_piano_roll_midi(arr, save_dir, args.fs, y=label_arr, save_ind=count_samples)
else:
midi_util.save_piano_roll_midi(arr, save_dir, args.fs, save_ind=count_samples)
# test distance between generated samples and target
generated_samples = th.from_numpy(arr) / 63.5 - 1
results = midi_util.eval_rule_loss(generated_samples, model_kwargs["rule"])
all_results = pd.concat([all_results, results], ignore_index=True)
# save every step
if args.save_files:
all_results.to_csv(os.path.join(save_dir, 'results.csv'), index=False)
count_samples += args.batch_size
if args.save_files:
all_results.to_csv(os.path.join(save_dir, 'results.csv'), index=False)
# Create the DataFrame for loss_stats
loss_columns = [col for col in all_results.columns if '.loss' in col]
rows = []
for col in loss_columns:
rows.append({'Attr': col, 'Mean': all_results[col].mean(), 'Std': all_results[col].std()})
loss_stats = pd.DataFrame(rows, columns=['Attr', 'Mean', 'Std'])
loss_stats.to_csv(os.path.join(save_dir, 'summary.csv'))
print(loss_stats)
if args.record:
import pickle
with open(os.path.join(save_dir, 'log_probs.pkl'), 'wb') as f:
pickle.dump(diffusion.log_probs, f)
with open(os.path.join(save_dir, 'loss_std.pkl'), 'wb') as f:
pickle.dump(diffusion.loss_std, f)
with open(os.path.join(save_dir, 'loss_range.pkl'), 'wb') as f:
pickle.dump(diffusion.loss_range, f)
with open(os.path.join(save_dir, 'each_loss.pkl'), 'wb') as f:
pickle.dump(diffusion.each_loss, f)
midi_util.plot_record(diffusion.log_probs, 'log_prob', save_dir)
midi_util.plot_record(diffusion.loss_std, 'loss_std', save_dir)
midi_util.plot_record(diffusion.loss_range, 'loss_range', save_dir)
if len(diffusion.inter_piano_rolls) > 0:
diffusion.inter_piano_rolls.append(th.from_numpy(arr))
inter_piano_rolls = th.concat(diffusion.inter_piano_rolls, dim=0)
save_dir_inter = os.path.join(save_dir, 'inter')
os.makedirs(save_dir_inter, exist_ok=True)
midi_util.save_piano_roll_midi(inter_piano_rolls.numpy(), save_dir=save_dir_inter, fs=args.fs)
logger.log("sampling complete")
def create_argparser():
defaults = dict(
project="music-sampling",
dir="",
data_dir="", # use to load in val data to extract rule
config_path="",
model="DiTRotary_XL_8", # DiT model names
model_path="",
vae="kl/f8-all-onset",
vae_path="taming-transformers/checkpoints/all_onset/epoch_14.ckpt",
clip_denoised=False,
num_samples=128,
batch_size=16,
scale_factor=1.,
fs=100,
num_classes=0,
class_label=1, # class to generate
cfg=False,
w=4., # for cfg
classifier_scale=1.0,
record=False,
save_files=True,
training=False, # not training, so don't need to create more folders than needed
deterministic=False, # whether to use the same rule everytime
port=None,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
multiprocessing.set_start_method('spawn', force=True)
main()