|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import ast |
|
import logging |
|
import argparse |
|
import contextlib |
|
import json |
|
import os |
|
import re |
|
import sys |
|
from enum import IntEnum |
|
from pathlib import Path |
|
from hashlib import sha256 |
|
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast |
|
from itertools import chain |
|
|
|
import math |
|
import numpy as np |
|
import torch |
|
|
|
if TYPE_CHECKING: |
|
from torch import Tensor |
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ: |
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) |
|
import gguf |
|
|
|
logger = logging.getLogger("hf-to-gguf") |
|
|
|
|
|
|
|
|
|
class SentencePieceTokenTypes(IntEnum): |
|
NORMAL = 1 |
|
UNKNOWN = 2 |
|
CONTROL = 3 |
|
USER_DEFINED = 4 |
|
UNUSED = 5 |
|
BYTE = 6 |
|
|
|
|
|
AnyModel = TypeVar("AnyModel", bound="type[Model]") |
|
|
|
|
|
class Model: |
|
_model_classes: dict[str, type[Model]] = {} |
|
|
|
dir_model: Path |
|
ftype: gguf.LlamaFileType |
|
fname_out: Path |
|
is_big_endian: bool |
|
endianess: gguf.GGUFEndian |
|
use_temp_file: bool |
|
lazy: bool |
|
part_names: list[str] |
|
is_safetensors: bool |
|
hparams: dict[str, Any] |
|
block_count: int |
|
tensor_map: gguf.TensorNameMap |
|
tensor_names: set[str] | None |
|
gguf_writer: gguf.GGUFWriter |
|
model_name: str | None |
|
metadata_override: Path | None |
|
dir_model_card: Path |
|
|
|
|
|
model_arch: gguf.MODEL_ARCH |
|
|
|
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False, |
|
use_temp_file: bool = False, eager: bool = False, |
|
metadata_override: Path | None = None, model_name: str | None = None, |
|
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, |
|
small_first_shard: bool = False, hparams: dict[str, Any] | None = None): |
|
if type(self) is Model: |
|
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") |
|
|
|
self.dir_model = dir_model |
|
self.ftype = ftype |
|
self.fname_out = fname_out |
|
self.is_big_endian = is_big_endian |
|
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE |
|
self.use_temp_file = use_temp_file |
|
self.lazy = not eager |
|
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") |
|
self.is_safetensors = len(self.part_names) > 0 |
|
if not self.is_safetensors: |
|
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") |
|
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams |
|
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"]) |
|
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) |
|
self.tensor_names = None |
|
self.metadata_override = metadata_override |
|
self.model_name = model_name |
|
self.dir_model_card = dir_model |
|
|
|
|
|
if self.ftype == gguf.LlamaFileType.GUESSED: |
|
|
|
_, first_tensor = next(self.get_tensors()) |
|
if first_tensor.dtype == torch.float16: |
|
logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})") |
|
self.ftype = gguf.LlamaFileType.MOSTLY_F16 |
|
else: |
|
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") |
|
self.ftype = gguf.LlamaFileType.MOSTLY_BF16 |
|
|
|
|
|
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, |
|
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard) |
|
|
|
@classmethod |
|
def __init_subclass__(cls): |
|
|
|
|
|
if "model_arch" not in cls.__dict__: |
|
raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}") |
|
|
|
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: |
|
key = next((k for k in keys if k in self.hparams), None) |
|
if key is not None: |
|
return self.hparams[key] |
|
if optional: |
|
return None |
|
raise KeyError(f"could not find any of: {keys}") |
|
|
|
def set_vocab(self): |
|
self._set_vocab_gpt2() |
|
|
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]: |
|
tensor_names_from_parts: set[str] = set() |
|
|
|
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin" |
|
index_name += ".index.json" |
|
index_file = self.dir_model / index_name |
|
|
|
if index_file.is_file(): |
|
self.tensor_names = set() |
|
logger.info(f"gguf: loading model weight map from '{index_name}'") |
|
with open(index_file, "r", encoding="utf-8") as f: |
|
index: dict[str, Any] = json.load(f) |
|
weight_map = index.get("weight_map") |
|
if weight_map is None or not isinstance(weight_map, dict): |
|
raise ValueError(f"Can't load 'weight_map' from {index_name!r}") |
|
self.tensor_names.update(weight_map.keys()) |
|
else: |
|
self.tensor_names = tensor_names_from_parts |
|
weight_map = {} |
|
|
|
for part_name in self.part_names: |
|
logger.info(f"gguf: loading model part '{part_name}'") |
|
ctx: ContextManager[Any] |
|
if self.is_safetensors: |
|
from safetensors import safe_open |
|
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) |
|
else: |
|
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) |
|
|
|
with ctx as model_part: |
|
tensor_names_from_parts.update(model_part.keys()) |
|
|
|
for name in model_part.keys(): |
|
if self.is_safetensors: |
|
if self.lazy: |
|
data = model_part.get_slice(name) |
|
data = LazyTorchTensor.from_safetensors_slice(data) |
|
else: |
|
data = model_part.get_tensor(name) |
|
else: |
|
data = model_part[name] |
|
if self.lazy: |
|
data = LazyTorchTensor.from_eager(data) |
|
yield name, data |
|
|
|
|
|
if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0: |
|
missing = sorted(self.tensor_names.difference(tensor_names_from_parts)) |
|
extra = sorted(tensor_names_from_parts.difference(self.tensor_names)) |
|
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map)) |
|
if len(extra) == 0 and len(missing_files) > 0: |
|
raise ValueError(f"Missing or incomplete model files: {missing_files}") |
|
else: |
|
raise ValueError("Mismatch between weight map and model parts for tensor names:\n" |
|
f"Missing tensors: {missing}\n" |
|
f"Extra tensors: {extra}") |
|
|
|
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str: |
|
if key not in gguf.MODEL_TENSORS[self.model_arch]: |
|
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}") |
|
name: str = gguf.TENSOR_NAMES[key] |
|
if "{bid}" in name: |
|
assert bid is not None |
|
name = name.format(bid=bid) |
|
return name + suffix |
|
|
|
def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool: |
|
if key not in gguf.MODEL_TENSORS[self.model_arch]: |
|
return False |
|
key_name: str = gguf.TENSOR_NAMES[key] |
|
if "{bid}" in key_name: |
|
if bid is None: |
|
return False |
|
key_name = key_name.format(bid=bid) |
|
else: |
|
if bid is not None: |
|
return False |
|
return name == (key_name + suffix) |
|
|
|
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str: |
|
new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
return new_name |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_block_count(self.block_count) |
|
|
|
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: |
|
self.gguf_writer.add_context_length(n_ctx) |
|
logger.info(f"gguf: context length = {n_ctx}") |
|
|
|
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None: |
|
self.gguf_writer.add_embedding_length(n_embd) |
|
logger.info(f"gguf: embedding length = {n_embd}") |
|
|
|
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: |
|
self.gguf_writer.add_feed_forward_length(n_ff) |
|
logger.info(f"gguf: feed forward length = {n_ff}") |
|
|
|
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None: |
|
self.gguf_writer.add_head_count(n_head) |
|
logger.info(f"gguf: head count = {n_head}") |
|
|
|
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
logger.info(f"gguf: key-value head count = {n_head_kv}") |
|
|
|
if (rope_theta := self.hparams.get("rope_theta")) is not None: |
|
self.gguf_writer.add_rope_freq_base(rope_theta) |
|
logger.info(f"gguf: rope theta = {rope_theta}") |
|
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: |
|
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) |
|
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") |
|
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: |
|
self.gguf_writer.add_layer_norm_eps(f_norm_eps) |
|
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") |
|
if (n_experts := self.hparams.get("num_local_experts")) is not None: |
|
self.gguf_writer.add_expert_count(n_experts) |
|
logger.info(f"gguf: expert count = {n_experts}") |
|
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: |
|
self.gguf_writer.add_expert_used_count(n_experts_used) |
|
logger.info(f"gguf: experts used count = {n_experts_used}") |
|
|
|
if (head_dim := self.hparams.get("head_dim")) is not None: |
|
self.gguf_writer.add_key_length(head_dim) |
|
self.gguf_writer.add_value_length(head_dim) |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
logger.info(f"gguf: file type = {self.ftype}") |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: |
|
del name, new_name, bid, n_dims |
|
|
|
return False |
|
|
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
return () |
|
|
|
def prepare_tensors(self): |
|
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") |
|
|
|
for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
bid = None |
|
for part in name.split("."): |
|
if part.isdecimal(): |
|
bid = int(part) |
|
break |
|
|
|
for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)): |
|
|
|
|
|
data = data_torch.numpy() |
|
|
|
|
|
if len(data.shape) == 0: |
|
data = data_torch.numpy() |
|
|
|
n_dims = len(data.shape) |
|
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) |
|
|
|
|
|
if n_dims <= 1 or new_name.endswith("_norm.weight"): |
|
data_qtype = gguf.GGMLQuantizationType.F32 |
|
|
|
|
|
|
|
if data_qtype is False and ( |
|
any( |
|
self.match_model_tensor_name(new_name, key, bid) |
|
for key in ( |
|
gguf.MODEL_TENSOR.FFN_GATE_INP, |
|
gguf.MODEL_TENSOR.POS_EMBD, |
|
gguf.MODEL_TENSOR.TOKEN_TYPES, |
|
gguf.MODEL_TENSOR.SSM_CONV1D, |
|
gguf.MODEL_TENSOR.TIME_MIX_FIRST, |
|
gguf.MODEL_TENSOR.TIME_MIX_W1, |
|
gguf.MODEL_TENSOR.TIME_MIX_W2, |
|
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1, |
|
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2, |
|
gguf.MODEL_TENSOR.POSNET_NORM1, |
|
gguf.MODEL_TENSOR.POSNET_NORM2, |
|
) |
|
) |
|
or not new_name.endswith(".weight") |
|
): |
|
data_qtype = gguf.GGMLQuantizationType.F32 |
|
|
|
if data_qtype is False and any( |
|
self.match_model_tensor_name(new_name, key, bid) |
|
for key in ( |
|
gguf.MODEL_TENSOR.TOKEN_EMBD, |
|
gguf.MODEL_TENSOR.OUTPUT, |
|
) |
|
): |
|
if self.ftype in ( |
|
gguf.LlamaFileType.MOSTLY_TQ1_0, |
|
gguf.LlamaFileType.MOSTLY_TQ2_0, |
|
): |
|
|
|
data_qtype = gguf.GGMLQuantizationType.F16 |
|
|
|
|
|
if isinstance(data_qtype, bool): |
|
if self.ftype == gguf.LlamaFileType.ALL_F32: |
|
data_qtype = gguf.GGMLQuantizationType.F32 |
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16: |
|
data_qtype = gguf.GGMLQuantizationType.F16 |
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: |
|
data_qtype = gguf.GGMLQuantizationType.BF16 |
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0: |
|
data_qtype = gguf.GGMLQuantizationType.Q8_0 |
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0: |
|
data_qtype = gguf.GGMLQuantizationType.TQ1_0 |
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0: |
|
data_qtype = gguf.GGMLQuantizationType.TQ2_0 |
|
else: |
|
raise ValueError(f"Unknown file type: {self.ftype.name}") |
|
|
|
try: |
|
data = gguf.quants.quantize(data, data_qtype) |
|
except gguf.QuantError as e: |
|
logger.warning("%s, %s", e, "falling back to F16") |
|
data_qtype = gguf.GGMLQuantizationType.F16 |
|
data = gguf.quants.quantize(data, data_qtype) |
|
|
|
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape |
|
|
|
|
|
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}" |
|
|
|
|
|
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) |
|
|
|
def set_type(self): |
|
self.gguf_writer.add_type(gguf.GGUFType.MODEL) |
|
|
|
def prepare_metadata(self, vocab_only: bool): |
|
|
|
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count() |
|
|
|
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params) |
|
|
|
|
|
if self.metadata.name is None: |
|
self.metadata.name = self.dir_model.name |
|
|
|
|
|
if self.metadata.size_label is None and total_params > 0: |
|
self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count) |
|
|
|
|
|
output_type: str = self.ftype.name.partition("_")[2] |
|
|
|
|
|
if self.fname_out.is_dir(): |
|
|
|
if not vocab_only: |
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None) |
|
else: |
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab") |
|
|
|
|
|
self.fname_out = self.fname_out / f"{fname_default}.gguf" |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) |
|
|
|
self.set_type() |
|
|
|
logger.info("Set meta model") |
|
self.metadata.set_gguf_meta_model(self.gguf_writer) |
|
|
|
logger.info("Set model parameters") |
|
self.set_gguf_parameters() |
|
|
|
logger.info("Set model tokenizer") |
|
self.set_vocab() |
|
|
|
logger.info("Set model quantization version") |
|
self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) |
|
|
|
def write(self): |
|
self.prepare_tensors() |
|
self.prepare_metadata(vocab_only=False) |
|
self.gguf_writer.write_header_to_file(path=self.fname_out) |
|
self.gguf_writer.write_kv_data_to_file() |
|
self.gguf_writer.write_tensors_to_file(progress=True) |
|
self.gguf_writer.close() |
|
|
|
def write_vocab(self): |
|
if len(self.gguf_writer.tensors) != 1: |
|
raise ValueError('Splitting the vocabulary is not supported') |
|
|
|
self.prepare_metadata(vocab_only=True) |
|
self.gguf_writer.write_header_to_file(path=self.fname_out) |
|
self.gguf_writer.write_kv_data_to_file() |
|
self.gguf_writer.close() |
|
|
|
@staticmethod |
|
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]: |
|
part_names: list[str] = [] |
|
for filename in os.listdir(dir_model): |
|
if filename.startswith(prefix) and filename.endswith(suffix): |
|
part_names.append(filename) |
|
|
|
part_names.sort() |
|
|
|
return part_names |
|
|
|
@staticmethod |
|
def load_hparams(dir_model: Path): |
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
|
|
@classmethod |
|
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: |
|
assert names |
|
|
|
def func(modelcls: AnyModel) -> AnyModel: |
|
for name in names: |
|
cls._model_classes[name] = modelcls |
|
return modelcls |
|
return func |
|
|
|
@classmethod |
|
def from_model_architecture(cls, arch: str) -> type[Model]: |
|
try: |
|
return cls._model_classes[arch] |
|
except KeyError: |
|
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None |
|
|
|
def does_token_look_special(self, token: str | bytes) -> bool: |
|
if isinstance(token, (bytes, bytearray)): |
|
token_text = token.decode(encoding="utf-8") |
|
elif isinstance(token, memoryview): |
|
token_text = token.tobytes().decode(encoding="utf-8") |
|
else: |
|
token_text = token |
|
|
|
|
|
|
|
seems_special = token_text in ( |
|
"<pad>", |
|
"<mask>", "<2mass>", "[@BOS@]", |
|
) |
|
|
|
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) |
|
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) |
|
|
|
|
|
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) |
|
|
|
return seems_special |
|
|
|
|
|
def get_vocab_base(self) -> tuple[list[str], list[int], str]: |
|
tokens: list[str] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(self.dir_model) |
|
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) |
|
assert max(tokenizer.vocab.values()) < vocab_size |
|
|
|
tokpre = self.get_vocab_base_pre(tokenizer) |
|
|
|
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} |
|
added_vocab = tokenizer.get_added_vocab() |
|
|
|
for i in range(vocab_size): |
|
if i not in reverse_vocab: |
|
tokens.append(f"[PAD{i}]") |
|
toktypes.append(gguf.TokenType.UNUSED) |
|
else: |
|
token: str = reverse_vocab[i] |
|
if token in added_vocab: |
|
|
|
|
|
if not tokenizer.added_tokens_decoder[i].normalized: |
|
previous_token = token |
|
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False)) |
|
if previous_token != token: |
|
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer") |
|
|
|
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): |
|
toktypes.append(gguf.TokenType.CONTROL) |
|
else: |
|
|
|
|
|
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") |
|
toktypes.append(gguf.TokenType.USER_DEFINED) |
|
else: |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
tokens.append(token) |
|
|
|
return tokens, toktypes, tokpre |
|
|
|
|
|
|
|
|
|
|
|
def get_vocab_base_pre(self, tokenizer) -> str: |
|
|
|
|
|
|
|
|
|
|
|
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' |
|
|
|
chktok = tokenizer.encode(chktxt) |
|
chkhsh = sha256(str(chktok).encode()).hexdigest() |
|
|
|
logger.debug(f"chktok: {chktok}") |
|
logger.debug(f"chkhsh: {chkhsh}") |
|
|
|
res = None |
|
|
|
|
|
|
|
|
|
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": |
|
|
|
res = "llama-bpe" |
|
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": |
|
|
|
res = "deepseek-llm" |
|
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": |
|
|
|
res = "deepseek-coder" |
|
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": |
|
|
|
res = "falcon" |
|
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e": |
|
|
|
res = "falcon3" |
|
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": |
|
|
|
res = "bert-bge" |
|
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7": |
|
|
|
res = "bert-bge-large" |
|
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": |
|
|
|
res = "mpt" |
|
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": |
|
|
|
res = "starcoder" |
|
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": |
|
|
|
res = "gpt-2" |
|
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": |
|
|
|
res = "stablelm2" |
|
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": |
|
|
|
res = "refact" |
|
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": |
|
|
|
res = "command-r" |
|
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": |
|
|
|
res = "qwen2" |
|
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": |
|
|
|
res = "olmo" |
|
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": |
|
|
|
res = "dbrx" |
|
if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448": |
|
|
|
res = "jina-v1-en" |
|
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": |
|
|
|
res = "jina-v2-en" |
|
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": |
|
|
|
res = "jina-v2-es" |
|
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": |
|
|
|
res = "jina-v2-de" |
|
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d": |
|
|
|
res = "smaug-bpe" |
|
if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360": |
|
|
|
res = "poro-chat" |
|
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a": |
|
|
|
res = "jina-v2-code" |
|
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": |
|
|
|
res = "chatglm-bpe" |
|
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": |
|
|
|
res = "viking" |
|
if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901": |
|
|
|
res = "jais" |
|
if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f": |
|
|
|
res = "codeshell" |
|
if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e": |
|
|
|
res = "tekken" |
|
if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249": |
|
|
|
res = "smollm" |
|
if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7": |
|
|
|
res = "bloom" |
|
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": |
|
|
|
res = "gpt3-finnish" |
|
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": |
|
|
|
res = "exaone" |
|
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085": |
|
|
|
res = "phi-2" |
|
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450": |
|
|
|
res = "chameleon" |
|
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35": |
|
|
|
res = "minerva-7b" |
|
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65": |
|
|
|
res = "roberta-bpe" |
|
if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb": |
|
|
|
res = "gigachat" |
|
if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1": |
|
|
|
res = "megrez" |
|
|
|
if res is None: |
|
logger.warning("\n") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") |
|
logger.warning("** There are 2 possible reasons for this:") |
|
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") |
|
logger.warning("** - the pre-tokenization config has changed upstream") |
|
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") |
|
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") |
|
logger.warning("**") |
|
logger.warning(f"** chkhsh: {chkhsh}") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("\n") |
|
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") |
|
|
|
logger.debug(f"tokenizer.ggml.pre: {repr(res)}") |
|
logger.debug(f"chkhsh: {chkhsh}") |
|
|
|
return res |
|
|
|
|
|
def _set_vocab_none(self) -> None: |
|
self.gguf_writer.add_tokenizer_model("none") |
|
|
|
def _set_vocab_gpt2(self) -> None: |
|
tokens, toktypes, tokpre = self.get_vocab_base() |
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_qwen(self): |
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
tokens: list[str] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
vocab_size = hparams["vocab_size"] |
|
assert max(tokenizer.get_vocab().values()) < vocab_size |
|
|
|
tokpre = self.get_vocab_base_pre(tokenizer) |
|
|
|
merges = [] |
|
vocab = {} |
|
mergeable_ranks = tokenizer.mergeable_ranks |
|
for token, rank in mergeable_ranks.items(): |
|
vocab[QwenModel.token_bytes_to_string(token)] = rank |
|
if len(token) == 1: |
|
continue |
|
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) |
|
assert len(merged) == 2 |
|
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) |
|
|
|
|
|
added_vocab = tokenizer.special_tokens |
|
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} |
|
|
|
for i in range(vocab_size): |
|
if i not in reverse_vocab: |
|
tokens.append(f"[PAD{i}]") |
|
toktypes.append(gguf.TokenType.UNUSED) |
|
elif reverse_vocab[i] in added_vocab: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.CONTROL) |
|
else: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
|
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) |
|
special_vocab.merges = merges |
|
|
|
if len(special_vocab.special_token_ids) == 0: |
|
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) |
|
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) |
|
|
|
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_sentencepiece(self, add_to_gguf=True): |
|
tokens, scores, toktypes = self._create_vocab_sentencepiece() |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _create_vocab_sentencepiece(self): |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
raise FileNotFoundError(f"File not found: {tokenizer_path}") |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
for key in added_tokens_json: |
|
token_id = added_tokens_json[key] |
|
if token_id >= vocab_size: |
|
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
tokens[token_id] = key.encode("utf-8") |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) |
|
for token_id, token_data in added_tokens_decoder.items(): |
|
token_id = int(token_id) |
|
token: str = token_data["content"] |
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: |
|
if tokens[token_id] != token.encode("utf-8"): |
|
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}') |
|
if token_data.get("special") or self.does_token_look_special(token): |
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL |
|
else: |
|
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
scores[token_id] = -1000.0 |
|
tokens[token_id] = token.encode("utf-8") |
|
|
|
if vocab_size > len(tokens): |
|
pad_count = vocab_size - len(tokens) |
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") |
|
for i in range(1, pad_count + 1): |
|
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.UNUSED) |
|
|
|
return tokens, scores, toktypes |
|
|
|
def _set_vocab_llama_hf(self): |
|
vocab = gguf.LlamaHfVocab(self.dir_model) |
|
tokens = [] |
|
scores = [] |
|
toktypes = [] |
|
|
|
for text, score, toktype in vocab.all_tokens(): |
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
assert len(tokens) == vocab.vocab_size |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int): |
|
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf" |
|
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") |
|
vocab_reader = gguf.GGUFReader(tokenizer_path, "r") |
|
|
|
default_pre = "mpt" if model_name == "gpt-neox" else "default" |
|
|
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL) |
|
assert field |
|
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8")) |
|
|
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE) |
|
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre) |
|
|
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST) |
|
assert field |
|
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) |
|
|
|
if model_name == "llama-spm": |
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES) |
|
assert field |
|
self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) |
|
|
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) |
|
assert field |
|
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) |
|
|
|
if model_name != "llama-spm": |
|
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES) |
|
assert field |
|
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) |
|
|
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None: |
|
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) |
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None: |
|
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) |
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None: |
|
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) |
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None: |
|
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0]) |
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None: |
|
self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0]) |
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None: |
|
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0]) |
|
|
|
|
|
@Model.register("GPTNeoXForCausalLM") |
|
class GPTNeoXModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GPTNEOX |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count( |
|
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), |
|
) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name): |
|
|
|
|
|
|
|
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) |
|
data_torch = torch.cat( |
|
( |
|
qkv_weights[:, 0, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed)), |
|
), |
|
dim=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.weight") |
|
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name): |
|
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) |
|
data_torch = torch.cat( |
|
( |
|
qkv_bias[:, 0, :].reshape((n_embed,)), |
|
qkv_bias[:, 1, :].reshape((n_embed,)), |
|
qkv_bias[:, 2, :].reshape((n_embed,)), |
|
), |
|
dim=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.bias") |
|
|
|
tensors.append((self.map_tensor_name(name), data_torch)) |
|
|
|
return tensors |
|
|
|
|
|
@Model.register("BloomForCausalLM", "BloomModel") |
|
class BloomModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BLOOM |
|
|
|
def set_gguf_parameters(self): |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) |
|
self.gguf_writer.add_embedding_length(n_embed) |
|
self.gguf_writer.add_feed_forward_length(4 * n_embed) |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
|
|
name = re.sub(r'transformer\.', '', name) |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): |
|
|
|
|
|
|
|
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) |
|
data_torch = torch.cat( |
|
( |
|
qkv_weights[:, 0, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed)), |
|
), |
|
dim=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.weight") |
|
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): |
|
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) |
|
data_torch = torch.cat( |
|
( |
|
qkv_bias[:, 0, :].reshape((n_embed,)), |
|
qkv_bias[:, 1, :].reshape((n_embed,)), |
|
qkv_bias[:, 2, :].reshape((n_embed,)), |
|
), |
|
dim=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.bias") |
|
|
|
tensors.append((self.map_tensor_name(name), data_torch)) |
|
|
|
if name == "word_embeddings.weight": |
|
assert self.tensor_names is not None |
|
|
|
|
|
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) |
|
|
|
return tensors |
|
|
|
|
|
@Model.register("MPTForCausalLM") |
|
class MPTModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MPT |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_gpt2() |
|
except Exception: |
|
|
|
self._set_vocab_sentencepiece() |
|
self.gguf_writer.add_add_bos_token(False) |
|
self.gguf_writer.add_pad_token_id(3) |
|
self.gguf_writer.add_eos_token_id(1) |
|
self.gguf_writer.add_unk_token_id(0) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layers"] |
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) |
|
self.gguf_writer.add_head_count(self.hparams["n_heads"]) |
|
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): |
|
self.gguf_writer.add_head_count_kv(kv_n_heads) |
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
if self.hparams["attn_config"]["clip_qkv"] is not None: |
|
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) |
|
if self.hparams["attn_config"]["alibi"]: |
|
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) |
|
else: |
|
self.gguf_writer.add_max_alibi_bias(0.0) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
if "scales" in name: |
|
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales")) |
|
new_name = new_name.replace("scales", "act.scales") |
|
else: |
|
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias")) |
|
|
|
return [(new_name, data_torch)] |
|
|
|
|
|
@Model.register("OrionForCausalLM") |
|
class OrionModel(Model): |
|
model_arch = gguf.MODEL_ARCH.ORION |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
|
|
|
|
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) |
|
|
|
|
|
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") |
|
class BaichuanModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BAICHUAN |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight": |
|
logger.info(f"Unpacking and permuting layer {bid}") |
|
tensors = [ |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), |
|
self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)), |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), |
|
self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)), |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), |
|
self._reverse_hf_part(data_torch, 2)), |
|
] |
|
else: |
|
tensors = [(self.map_tensor_name(name), data_torch)] |
|
|
|
return tensors |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
def _reverse_hf_permute_part( |
|
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, |
|
) -> Tensor: |
|
r = weights.shape[0] // 3 |
|
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) |
|
|
|
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: |
|
r = weights.shape[0] // 3 |
|
return weights[r * n_part:r * n_part + r, ...] |
|
|
|
|
|
@Model.register("XverseForCausalLM") |
|
class XverseModel(Model): |
|
model_arch = gguf.MODEL_ARCH.XVERSE |
|
|
|
def set_vocab(self): |
|
assert (self.dir_model / "tokenizer.json").is_file() |
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
|
|
tokens: list[bytes] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model) |
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) |
|
|
|
|
|
max_vocab_index = max(tokenizer.get_vocab().values()) |
|
if max_vocab_index >= vocab_size: |
|
raise ValueError("Vocabulary size exceeds expected maximum size.") |
|
|
|
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} |
|
added_vocab = tokenizer.get_added_vocab() |
|
|
|
for token_id in range(vocab_size): |
|
token_text = reverse_vocab[token_id].encode('utf-8') |
|
|
|
if token_text == b"\x00": |
|
toktype = gguf.TokenType.BYTE |
|
token_text = f"<{token_text}>".encode('utf-8') |
|
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): |
|
toktype = gguf.TokenType.BYTE |
|
elif reverse_vocab[token_id] in added_vocab: |
|
if tokenizer.added_tokens_decoder[token_id].special: |
|
toktype = gguf.TokenType.CONTROL |
|
else: |
|
toktype = gguf.TokenType.USER_DEFINED |
|
else: |
|
toktype = gguf.TokenType.NORMAL |
|
|
|
tokens.append(token_text) |
|
toktypes.append(toktype) |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
|
|
if name.endswith("q_proj.weight"): |
|
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count) |
|
if name.endswith("k_proj.weight"): |
|
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv) |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
|
|
@Model.register("FalconForCausalLM", "RWForCausalLM") |
|
class FalconModel(Model): |
|
model_arch = gguf.MODEL_ARCH.FALCON |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams.get("num_hidden_layers") |
|
if block_count is None: |
|
block_count = self.hparams["n_layer"] |
|
|
|
n_head = self.hparams.get("num_attention_heads") |
|
if n_head is None: |
|
n_head = self.hparams["n_head"] |
|
|
|
n_head_kv = self.hparams.get("num_kv_heads") |
|
if n_head_kv is None: |
|
n_head_kv = self.hparams.get("n_head_kv", 1) |
|
|
|
self.gguf_writer.add_context_length(2048) |
|
self.gguf_writer.add_tensor_data_layout("jploski") |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "query_key_value" in name: |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1 |
|
head_dim = self.hparams["hidden_size"] // n_head |
|
|
|
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) |
|
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) |
|
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) |
|
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) |
|
data_torch = torch.cat((q, k, v)).reshape_as(data_torch) |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("GPTBigCodeForCausalLM") |
|
class StarCoderModel(Model): |
|
model_arch = gguf.MODEL_ARCH.STARCODER |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layer"] |
|
|
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(1) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
|
|
@Model.register("GPTRefactForCausalLM") |
|
class RefactModel(Model): |
|
model_arch = gguf.MODEL_ARCH.REFACT |
|
|
|
def set_vocab(self): |
|
super().set_vocab() |
|
|
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, |
|
special_token_types = ['prefix', 'suffix', 'middle', 'eot']) |
|
special_vocab._set_special_token("prefix", 1) |
|
special_vocab._set_special_token("suffix", 3) |
|
special_vocab._set_special_token("middle", 2) |
|
special_vocab.chat_template = None |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
hidden_dim = self.hparams["n_embd"] |
|
inner_dim = 4 * hidden_dim |
|
hidden_dim = int(2 * inner_dim / 3) |
|
multiple_of = 256 |
|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
block_count = self.hparams["n_layer"] |
|
|
|
|
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
|
|
self.gguf_writer.add_feed_forward_length(ff_dim) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(1) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
hidden_dim = self.hparams["n_embd"] |
|
inner_dim = 4 * hidden_dim |
|
hidden_dim = int(2 * inner_dim / 3) |
|
multiple_of = 256 |
|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
n_head = self.hparams["n_head"] |
|
n_head_kv = 1 |
|
head_dim = self.hparams["n_embd"] // n_head |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
if bid is not None: |
|
if name == f"transformer.h.{bid}.attn.kv.weight": |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim])) |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:])) |
|
elif name == f"transformer.h.{bid}.attn.q.weight": |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch)) |
|
elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight": |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])) |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])) |
|
|
|
if len(tensors) == 0: |
|
tensors.append((self.map_tensor_name(name), data_torch)) |
|
|
|
return tensors |
|
|
|
|
|
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") |
|
class StableLMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.STABLELM |
|
|
|
def set_vocab(self): |
|
if (self.dir_model / "tokenizer.json").is_file(): |
|
self._set_vocab_gpt2() |
|
else: |
|
|
|
self._set_vocab_qwen() |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) |
|
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) |
|
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) |
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
_q_norms: list[dict[str, Tensor]] | None = None |
|
_k_norms: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams["num_key_value_heads"] |
|
|
|
if name.find("q_layernorm.norms") != -1: |
|
assert bid is not None |
|
|
|
if self._q_norms is None: |
|
self._q_norms = [{} for _ in range(self.block_count)] |
|
|
|
self._q_norms[bid][name] = data_torch |
|
|
|
if len(self._q_norms[bid]) >= n_head: |
|
return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm") |
|
else: |
|
return [] |
|
|
|
if name.find("k_layernorm.norms") != -1: |
|
assert bid is not None |
|
|
|
if self._k_norms is None: |
|
self._k_norms = [{} for _ in range(self.block_count)] |
|
|
|
self._k_norms[bid][name] = data_torch |
|
|
|
if len(self._k_norms[bid]) >= n_kv_head: |
|
return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm") |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"): |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_head): |
|
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" |
|
datas.append(norms[ename]) |
|
del norms[ename] |
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" |
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
return [(new_name, data_torch)] |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._q_norms is not None or self._k_norms is not None: |
|
|
|
norms = ( |
|
[k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else [] |
|
) + ( |
|
[k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else [] |
|
) |
|
if len(norms) > 0: |
|
raise ValueError(f"Unprocessed norms: {norms}") |
|
|
|
|
|
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") |
|
class LlamaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.LLAMA |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
try: |
|
self._set_vocab_llama_hf() |
|
except (FileNotFoundError, TypeError): |
|
|
|
self._set_vocab_gpt2() |
|
|
|
|
|
if self.hparams.get("vocab_size", 32000) == 32016: |
|
special_vocab = gguf.SpecialVocab( |
|
self.dir_model, load_merges=False, |
|
special_token_types = ['prefix', 'suffix', 'middle', 'eot'] |
|
) |
|
special_vocab._set_special_token("prefix", 32007) |
|
special_vocab._set_special_token("suffix", 32008) |
|
special_vocab._set_special_token("middle", 32009) |
|
special_vocab._set_special_token("eot", 32010) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
if "add_prefix_space" in tokenizer_config_json: |
|
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"]) |
|
|
|
|
|
if self.hparams.get("vocab_size", 32000) == 49152: |
|
self.gguf_writer.add_add_bos_token(False) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
|
|
if "head_dim" in hparams: |
|
rope_dim = hparams["head_dim"] |
|
else: |
|
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] |
|
self.gguf_writer.add_rope_dimension_count(rope_dim) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
@staticmethod |
|
def permute(weights: Tensor, n_head: int, n_head_kv: int | None): |
|
if n_head_kv is not None and n_head != n_head_kv: |
|
n_head = n_head_kv |
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
if name.endswith(("q_proj.weight", "q_proj.bias")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight", "k_proj.bias")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) |
|
|
|
|
|
if name.find("block_sparse_moe.experts") != -1: |
|
n_experts = self.hparams["num_local_experts"] |
|
|
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for wid in ["w1", "w2", "w3"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): |
|
if rope_scaling.get("rope_type", '').lower() == "llama3": |
|
base = self.hparams.get("rope_theta", 10000.0) |
|
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) |
|
|
|
factor = rope_scaling.get("factor", 8.0) |
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) |
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) |
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192) |
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor |
|
high_freq_wavelen = old_context_len / high_freq_factor |
|
assert low_freq_wavelen != high_freq_wavelen |
|
|
|
rope_factors = [] |
|
for freq in freqs: |
|
wavelen = 2 * math.pi / freq |
|
if wavelen < high_freq_wavelen: |
|
rope_factors.append(1) |
|
elif wavelen > low_freq_wavelen: |
|
rope_factors.append(factor) |
|
else: |
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) |
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth)) |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("DeciLMForCausalLM") |
|
class DeciModel(Model): |
|
model_arch = gguf.MODEL_ARCH.DECI |
|
|
|
@staticmethod |
|
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int: |
|
|
|
intermediate_size = int(2 * ffn_mult * n_embd / 3) |
|
return DeciModel._find_multiple(intermediate_size, 256) |
|
|
|
@staticmethod |
|
def _find_multiple(n: int, k: int) -> int: |
|
|
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if "block_configs" in self.hparams: |
|
_block_configs: list[dict[str,Any]] = self.hparams["block_configs"] |
|
assert self.block_count == len(_block_configs) |
|
self._num_kv_heads = list() |
|
self._num_heads = list() |
|
_ffn_multipliers = list() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for il in range(len(_block_configs)): |
|
if _block_configs[il]["attention"]["n_heads_in_group"] is None: |
|
if _block_configs[il]["attention"]["replace_with_linear"] is True: |
|
self._num_kv_heads.append(0) |
|
self._num_heads.append(self.hparams["num_attention_heads"]) |
|
else: |
|
self._num_kv_heads.append(0) |
|
self._num_heads.append(0) |
|
else: |
|
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"]) |
|
self._num_heads.append(self.hparams["num_attention_heads"]) |
|
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"]) |
|
assert self.block_count == len(self._num_kv_heads) |
|
assert self.block_count == len(self._num_heads) |
|
assert self.block_count == len(_ffn_multipliers) |
|
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) |
|
assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int) |
|
assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float) |
|
self._ffn_dims: list[int] = [ |
|
DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"]) |
|
for multiplier in _ffn_multipliers |
|
] |
|
|
|
def set_vocab(self): |
|
|
|
|
|
if self.hparams.get("vocab_size", 128256) == 128256: |
|
tokens, toktypes, tokpre = self.get_vocab_base() |
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
else: |
|
|
|
self._set_vocab_llama_hf() |
|
|
|
def set_gguf_parameters(self): |
|
if "block_configs" in self.hparams: |
|
assert self.block_count == len(self._num_kv_heads) |
|
assert self.block_count == len(self._num_heads) |
|
assert self.block_count == len(self._ffn_dims) |
|
if (rope_theta := self.hparams.get("rope_theta")) is not None: |
|
self.gguf_writer.add_rope_freq_base(rope_theta) |
|
self.gguf_writer.add_head_count_kv(self._num_kv_heads) |
|
self.gguf_writer.add_head_count(self._num_heads) |
|
self.gguf_writer.add_feed_forward_length(self._ffn_dims) |
|
self.gguf_writer.add_block_count(self.block_count) |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
else: |
|
super().set_gguf_parameters() |
|
if "num_key_value_heads_per_layer" in self.hparams: |
|
self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"] |
|
assert self.block_count == len(self._num_kv_heads) |
|
self.gguf_writer.add_head_count_kv(self._num_kv_heads) |
|
hparams = self.hparams |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
|
|
if "head_dim" in hparams: |
|
rope_dim = hparams["head_dim"] |
|
else: |
|
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] |
|
self.gguf_writer.add_rope_dimension_count(rope_dim) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
@staticmethod |
|
def permute(weights: Tensor, n_head: int, n_head_kv: int | None): |
|
if n_head_kv is not None and n_head != n_head_kv: |
|
n_head = n_head_kv |
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
n_head = self.hparams["num_attention_heads"] |
|
if bid is not None: |
|
if "num_key_value_heads_per_layer" in self.hparams: |
|
n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid] |
|
elif "block_configs" in self.hparams: |
|
n_kv_head = self._num_kv_heads[bid] |
|
n_head = self._num_heads[bid] |
|
else: |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
else: |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
if name.endswith(("q_proj.weight", "q_proj.bias")): |
|
data_torch = DeciModel.permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight", "k_proj.bias")): |
|
data_torch = DeciModel.permute(data_torch, n_head, n_kv_head) |
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): |
|
if rope_scaling.get("rope_type", '').lower() == "llama3": |
|
base = self.hparams.get("rope_theta", 10000.0) |
|
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) |
|
|
|
factor = rope_scaling.get("factor", 8.0) |
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) |
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) |
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192) |
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor |
|
high_freq_wavelen = old_context_len / high_freq_factor |
|
assert low_freq_wavelen != high_freq_wavelen |
|
|
|
rope_factors = [] |
|
for freq in freqs: |
|
wavelen = 2 * math.pi / freq |
|
if wavelen < high_freq_wavelen: |
|
rope_factors.append(1) |
|
elif wavelen > low_freq_wavelen: |
|
rope_factors.append(factor) |
|
else: |
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) |
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth)) |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
|
|
@Model.register("BitnetForCausalLM") |
|
class BitnetModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BITNET |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(1.0) |
|
|
|
def weight_quant(self, weight: Tensor) -> Tensor: |
|
dtype = weight.dtype |
|
weight = weight.float() |
|
scale = weight.abs().mean().clamp(min=1e-5) |
|
iscale = 1 / scale |
|
|
|
|
|
|
|
result = (weight * iscale).round().clamp(-1, 1) / iscale |
|
return result.type(dtype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
new_name = self.map_tensor_name(name) |
|
|
|
if any(self.match_model_tensor_name(new_name, key, bid) for key in [ |
|
gguf.MODEL_TENSOR.ATTN_Q, |
|
gguf.MODEL_TENSOR.ATTN_K, |
|
gguf.MODEL_TENSOR.ATTN_V, |
|
gguf.MODEL_TENSOR.ATTN_OUT, |
|
gguf.MODEL_TENSOR.FFN_UP, |
|
gguf.MODEL_TENSOR.FFN_DOWN, |
|
gguf.MODEL_TENSOR.FFN_GATE, |
|
]): |
|
|
|
data_torch = self.weight_quant(data_torch) |
|
|
|
yield (new_name, data_torch) |
|
|
|
|
|
@Model.register("GrokForCausalLM") |
|
class GrokModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GROK |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
if name.find(".moe.") != -1: |
|
n_experts = self.hparams["num_local_experts"] |
|
|
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for wid in ["linear", "linear_1", "linear_v"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("DbrxForCausalLM") |
|
class DbrxModel(Model): |
|
model_arch = gguf.MODEL_ARCH.DBRX |
|
|
|
def set_gguf_parameters(self): |
|
ffn_config = self.hparams["ffn_config"] |
|
attn_config = self.hparams["attn_config"] |
|
self.gguf_writer.add_block_count(self.hparams["n_layers"]) |
|
|
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"]) |
|
|
|
self.gguf_writer.add_head_count(self.hparams["n_heads"]) |
|
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"]) |
|
|
|
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) |
|
|
|
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) |
|
|
|
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) |
|
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) |
|
|
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
logger.info(f"gguf: file type = {self.ftype}") |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
n_expert = self.hparams["ffn_config"]["moe_num_experts"] |
|
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] |
|
n_embd = self.hparams["d_model"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
exp_tensor_names = {"ffn.experts.mlp.w1": None, |
|
"ffn.experts.mlp.w2": (0, 2, 1), |
|
"ffn.experts.mlp.v1": None} |
|
experts = False |
|
|
|
for exp_tensor_name in exp_tensor_names.keys(): |
|
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: |
|
experts = True |
|
data_torch = data_torch.view(n_expert, n_ff, n_embd) |
|
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None: |
|
data_torch = data_torch.permute(*permute_tensor) |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) |
|
|
|
return [(new_name, data_torch)] |
|
|
|
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: |
|
del name, new_name, bid |
|
|
|
return n_dims > 1 |
|
|
|
|
|
@Model.register("MiniCPMForCausalLM") |
|
class MiniCPMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MINICPM |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
embedding_scale = float(self.hparams["scale_emb"]) |
|
self.gguf_writer.add_embedding_scale(embedding_scale) |
|
logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}") |
|
residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5 |
|
self.gguf_writer.add_residual_scale(residual_scale) |
|
logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}") |
|
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"] |
|
self.gguf_writer.add_logit_scale(logit_scale) |
|
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}") |
|
if self.hparams.get("rope_scaling") is not None: |
|
if self.hparams["rope_scaling"].get("type") == "longrope": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE) |
|
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}") |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] |
|
|
|
rope_scaling = self.find_hparam(['rope_scaling'], True) |
|
if rope_scaling is not None: |
|
long_factors = rope_scaling.get('long_factor', None) |
|
short_factors = rope_scaling.get('short_factor', None) |
|
|
|
if long_factors is None or short_factors is None: |
|
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') |
|
|
|
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: |
|
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) |
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
|
|
if name.endswith(("q_proj.weight")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("MiniCPM3ForCausalLM") |
|
class MiniCPM3Model(Model): |
|
model_arch = gguf.MODEL_ARCH.MINICPM3 |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(self.block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: |
|
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) |
|
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) |
|
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) |
|
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
rope_scaling = self.find_hparam(['rope_scaling'], True) |
|
if rope_scaling is not None: |
|
rope_dims = self.hparams["qk_rope_head_dim"] |
|
|
|
long_factors = rope_scaling.get('long_factor', None) |
|
short_factors = rope_scaling.get('short_factor', None) |
|
|
|
if long_factors is None or short_factors is None: |
|
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') |
|
|
|
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: |
|
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) |
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
|
|
@Model.register("QWenLMHeadModel") |
|
class QwenModel(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN |
|
|
|
@staticmethod |
|
def token_bytes_to_string(b): |
|
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode |
|
byte_encoder = bytes_to_unicode() |
|
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) |
|
|
|
@staticmethod |
|
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: |
|
parts = [bytes([b]) for b in token] |
|
while True: |
|
min_idx = None |
|
min_rank = None |
|
for i, pair in enumerate(zip(parts[:-1], parts[1:])): |
|
rank = mergeable_ranks.get(pair[0] + pair[1]) |
|
if rank is not None and (min_rank is None or rank < min_rank): |
|
min_idx = i |
|
min_rank = rank |
|
if min_rank is None or (max_rank is not None and min_rank >= max_rank): |
|
break |
|
assert min_idx is not None |
|
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] |
|
return parts |
|
|
|
def set_vocab(self): |
|
self._set_vocab_qwen() |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
|
|
@Model.register("Qwen2ForCausalLM") |
|
class Qwen2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN2 |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
self._set_vocab_gpt2() |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "yarn": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"]) |
|
|
|
|
|
@Model.register("Qwen2VLForConditionalGeneration") |
|
class Qwen2VLModel(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN2VL |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
mrope_section = self.hparams["rope_scaling"]["mrope_section"] |
|
mrope_section += [0] * max(0, 4 - len(mrope_section)) |
|
self.gguf_writer.add_rope_dimension_sections(mrope_section) |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
self._set_vocab_gpt2() |
|
|
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]: |
|
for name, data in super().get_tensors(): |
|
if name.startswith("visual."): |
|
continue |
|
yield name, data |
|
|
|
|
|
@Model.register("WavTokenizerDec") |
|
class WavTokenizerDecModel(Model): |
|
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
if \ |
|
name.endswith("codebook.cluster_size") or \ |
|
name.endswith("codebook.embed_avg") or \ |
|
name.endswith("codebook.inited"): |
|
logger.debug(f"Skipping {name!r}") |
|
return [] |
|
|
|
logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}") |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def set_vocab(self): |
|
self._set_vocab_none() |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_vocab_size (self.hparams["vocab_size"]) |
|
self.gguf_writer.add_features_length (self.hparams["n_embd_features"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"]) |
|
self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"]) |
|
self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"]) |
|
|
|
self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"]) |
|
self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"]) |
|
|
|
self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"]) |
|
self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"]) |
|
|
|
self.gguf_writer.add_causal_attention(False) |
|
|
|
|
|
@Model.register("Qwen2MoeForCausalLM") |
|
class Qwen2MoeModel(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN2MOE |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
if (n_experts := self.hparams.get("num_experts")) is not None: |
|
self.gguf_writer.add_expert_count(n_experts) |
|
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None: |
|
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) |
|
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}") |
|
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None: |
|
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size) |
|
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}") |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
if name.find("experts") != -1: |
|
n_experts = self.hparams["num_experts"] |
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for w_name in ["down_proj", "gate_proj", "up_proj"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("GPT2LMHeadModel") |
|
class GPT2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.GPT2 |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_context_length(self.hparams["n_ctx"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
if name.endswith((".attn.bias", ".attn.masked_bias")): |
|
return tensors |
|
|
|
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): |
|
data_torch = data_torch.transpose(1, 0) |
|
|
|
new_name = self.map_tensor_name(name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
|
|
|
|
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): |
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) |
|
|
|
return tensors |
|
|
|
|
|
@Model.register("PhiForCausalLM") |
|
class Phi2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.PHI2 |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) |
|
|
|
rot_pct = self.find_hparam(["partial_rotary_factor"]) |
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
|
|
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) |
|
|
|
self.gguf_writer.add_embedding_length(n_embd) |
|
self.gguf_writer.add_feed_forward_length(4 * n_embd) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head) |
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) |
|
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_add_bos_token(False) |
|
|
|
|
|
@Model.register("Phi3ForCausalLM") |
|
class Phi3MiniModel(Model): |
|
model_arch = gguf.MODEL_ARCH.PHI3 |
|
|
|
def set_vocab(self): |
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
tokenizer_class = tokenizer_config_json['tokenizer_class'] |
|
if tokenizer_class == 'GPT2Tokenizer': |
|
return self._set_vocab_gpt2() |
|
|
|
from sentencepiece import SentencePieceProcessor |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
raise ValueError(f'Error: Missing {tokenizer_path}') |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
|
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
|
|
for key in added_tokens_json: |
|
token_id = added_tokens_json[key] |
|
if token_id >= vocab_size: |
|
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
tokens[token_id] = key.encode("utf-8") |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) |
|
for token_id, foken_data in added_tokens_decoder.items(): |
|
token_id = int(token_id) |
|
token = foken_data["content"].encode("utf-8") |
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: |
|
if tokens[token_id] != token: |
|
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') |
|
tokens[token_id] = token |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
if foken_data.get("special"): |
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL |
|
|
|
tokenizer_file = self.dir_model / 'tokenizer.json' |
|
if tokenizer_file.is_file(): |
|
with open(tokenizer_file, "r", encoding="utf-8") as f: |
|
tokenizer_json = json.load(f) |
|
added_tokens = tokenizer_json.get("added_tokens", []) |
|
for foken_data in added_tokens: |
|
token_id = int(foken_data["id"]) |
|
token = foken_data["content"].encode("utf-8") |
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: |
|
if tokens[token_id] != token: |
|
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') |
|
tokens[token_id] = token |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
if foken_data.get("special"): |
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) |
|
|
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"]) |
|
rms_eps = self.find_hparam(["rms_norm_eps"]) |
|
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) |
|
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) |
|
rope_dims = n_embd // n_head |
|
|
|
self.gguf_writer.add_context_length(max_pos_embds) |
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds) |
|
self.gguf_writer.add_embedding_length(n_embd) |
|
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"])) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(rms_eps) |
|
self.gguf_writer.add_rope_dimension_count(rope_dims) |
|
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
sliding_window = self.hparams.get("sliding_window") |
|
|
|
if sliding_window is None: |
|
sliding_window = 0 |
|
self.gguf_writer.add_sliding_window(sliding_window) |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) |
|
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) |
|
rope_dims = n_embd // n_head |
|
|
|
|
|
rope_scaling = self.find_hparam(['rope_scaling'], True) |
|
if rope_scaling is None: |
|
return |
|
|
|
scale = max_pos_embds / orig_max_pos_embds |
|
|
|
rope_scaling_type = rope_scaling.get('type', '').lower() |
|
if len(rope_scaling_type) == 0: |
|
raise KeyError('Missing the required key rope_scaling.type') |
|
|
|
if rope_scaling_type == 'su' or rope_scaling_type == 'longrope': |
|
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0 |
|
elif rope_scaling_type == 'yarn': |
|
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0 |
|
else: |
|
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet') |
|
|
|
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor) |
|
|
|
long_factors = rope_scaling.get('long_factor', None) |
|
short_factors = rope_scaling.get('short_factor', None) |
|
|
|
if long_factors is None or short_factors is None: |
|
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') |
|
|
|
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: |
|
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) |
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) |
|
|
|
|
|
@Model.register("PlamoForCausalLM") |
|
class PlamoModel(Model): |
|
model_arch = gguf.MODEL_ARCH.PLAMO |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_context_length(4096) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(5) |
|
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def shuffle_attn_q_weight(self, data_torch): |
|
assert data_torch.size() == (5120, 5120) |
|
data_torch = data_torch.reshape(8, 5, 128, 5120) |
|
data_torch = torch.permute(data_torch, (1, 0, 2, 3)) |
|
data_torch = torch.reshape(data_torch, (5120, 5120)) |
|
return data_torch |
|
|
|
def shuffle_attn_output_weight(self, data_torch): |
|
assert data_torch.size() == (5120, 5120) |
|
data_torch = data_torch.reshape(5120, 8, 5, 128) |
|
data_torch = torch.permute(data_torch, (0, 2, 1, 3)) |
|
data_torch = torch.reshape(data_torch, (5120, 5120)) |
|
return data_torch |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
new_name = self.map_tensor_name(name) |
|
|
|
|
|
if new_name.endswith("attn_q.weight"): |
|
data_torch = self.shuffle_attn_q_weight(data_torch) |
|
elif new_name.endswith("attn_output.weight"): |
|
data_torch = self.shuffle_attn_output_weight(data_torch) |
|
|
|
return [(new_name, data_torch)] |
|
|
|
|
|
@Model.register("CodeShellForCausalLM") |
|
class CodeShellModel(Model): |
|
model_arch = gguf.MODEL_ARCH.CODESHELL |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layer"] |
|
|
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_rope_freq_base(10000.0) |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(1.0) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
new_name = self.map_tensor_name(name) |
|
|
|
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)] |
|
|
|
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): |
|
assert self.tensor_names is not None |
|
|
|
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): |
|
|
|
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) |
|
|
|
return tensors |
|
|
|
|
|
@Model.register("InternLM2ForCausalLM") |
|
class InternLM2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.INTERNLM2 |
|
|
|
def set_vocab(self): |
|
|
|
|
|
|
|
|
|
from sentencepiece import SentencePieceProcessor |
|
from sentencepiece import sentencepiece_model_pb2 as model |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
tokens: list[bytes] = [] |
|
scores: list[float] = [] |
|
toktypes: list[int] = [] |
|
|
|
if not tokenizer_path.is_file(): |
|
logger.error(f'Error: Missing {tokenizer_path}') |
|
sys.exit(1) |
|
|
|
sentencepiece_model = model.ModelProto() |
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) |
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
for token_id in range(vocab_size): |
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
if text == b"\x00": |
|
|
|
|
|
logger.warning(f"InternLM2 convert token '{text}' to '🐉'!") |
|
text = "🐉".encode("utf-8") |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
if piece.startswith('[UNUSED'): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
|
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
|
|
for key in added_tokens_json: |
|
tokens.append(key.encode("utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) |
|
|
|
chat_eos_token = '<|im_end|>' |
|
chat_eos_token_id = None |
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) |
|
for token_id, foken_data in added_tokens_decoder.items(): |
|
token_id = int(token_id) |
|
token = foken_data["content"] |
|
if token == chat_eos_token: |
|
chat_eos_token_id = token_id |
|
token = token.encode("utf-8") |
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: |
|
if tokens[token_id] != token: |
|
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') |
|
tokens[token_id] = token |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
if foken_data.get("special"): |
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL |
|
|
|
tokenizer_file = self.dir_model / 'tokenizer.json' |
|
if tokenizer_file.is_file(): |
|
with open(tokenizer_file, "r", encoding="utf-8") as f: |
|
tokenizer_json = json.load(f) |
|
added_tokens = tokenizer_json.get("added_tokens", []) |
|
for foken_data in added_tokens: |
|
token_id = int(foken_data["id"]) |
|
token = foken_data["content"] |
|
if token == chat_eos_token: |
|
chat_eos_token_id = token_id |
|
token = token.encode("utf-8") |
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: |
|
if tokens[token_id] != token: |
|
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') |
|
tokens[token_id] = token |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
if foken_data.get("special"): |
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
self.gguf_writer.add_add_space_prefix(add_prefix) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
old_eos = special_vocab.special_token_ids["eos"] |
|
if chat_eos_token_id is not None: |
|
|
|
|
|
|
|
special_vocab.special_token_ids["eos"] = chat_eos_token_id |
|
logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}" |
|
" in chat mode so that the conversation can end normally.") |
|
|
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
num_heads = self.hparams["num_attention_heads"] |
|
num_kv_heads = self.hparams["num_key_value_heads"] |
|
n_embd = self.hparams["hidden_size"] |
|
q_per_kv = num_heads // num_kv_heads |
|
head_dim = n_embd // num_heads |
|
num_groups = num_heads // q_per_kv |
|
|
|
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name: |
|
qkv = data_torch |
|
|
|
qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd)) |
|
q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1] |
|
|
|
|
|
q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads) |
|
k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads) |
|
v = v.reshape((-1, v.shape[-1])) |
|
|
|
return [ |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q), |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k), |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v), |
|
] |
|
else: |
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("BertModel", "BertForMaskedLM", "CamembertModel") |
|
class BertModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.vocab_size = None |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_causal_attention(False) |
|
|
|
|
|
pooling_path = None |
|
module_path = self.dir_model / "modules.json" |
|
if module_path.is_file(): |
|
with open(module_path, encoding="utf-8") as f: |
|
modules = json.load(f) |
|
for mod in modules: |
|
if mod["type"] == "sentence_transformers.models.Pooling": |
|
pooling_path = mod["path"] |
|
break |
|
|
|
|
|
if pooling_path is not None: |
|
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: |
|
pooling = json.load(f) |
|
if pooling["pooling_mode_mean_tokens"]: |
|
pooling_type = gguf.PoolingType.MEAN |
|
elif pooling["pooling_mode_cls_token"]: |
|
pooling_type = gguf.PoolingType.CLS |
|
else: |
|
raise NotImplementedError("Only MEAN and CLS pooling types supported") |
|
self.gguf_writer.add_pooling_type(pooling_type) |
|
|
|
def set_vocab(self): |
|
tokens, toktypes, tokpre = self.get_vocab_base() |
|
self.vocab_size = len(tokens) |
|
|
|
|
|
|
|
|
|
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1)) |
|
|
|
|
|
def phantom(tok): |
|
if tok.startswith("[") and tok.endswith("]"): |
|
return tok |
|
if tok.startswith("##"): |
|
return tok[2:] |
|
return "\u2581" + tok |
|
tokens = list(map(phantom, tokens)) |
|
|
|
|
|
self.gguf_writer.add_tokenizer_model("bert") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
if name.startswith("bert."): |
|
name = name[5:] |
|
|
|
if name.endswith(".gamma"): |
|
name = name[:-6] + ".weight" |
|
|
|
if name.endswith(".beta"): |
|
name = name[:-5] + ".bias" |
|
|
|
|
|
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): |
|
return [] |
|
|
|
if name.startswith("cls.predictions"): |
|
return [] |
|
|
|
if name.startswith("cls.seq_relationship"): |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("RobertaModel") |
|
class RobertaModel(BertModel): |
|
model_arch = gguf.MODEL_ARCH.BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
if (pad_token_id := self.hparams.get("pad_token_id")) is not None: |
|
self._position_offset = 1 + pad_token_id |
|
if "max_position_embeddings" in self.hparams: |
|
self.hparams["max_position_embeddings"] -= self._position_offset |
|
else: |
|
self._position_offset = None |
|
|
|
def set_vocab(self): |
|
"""Support BPE tokenizers for roberta models""" |
|
bpe_tok_path = self.dir_model / "tokenizer.json" |
|
if bpe_tok_path.exists(): |
|
self._set_vocab_gpt2() |
|
self.gguf_writer.add_add_bos_token(True) |
|
self.gguf_writer.add_add_eos_token(True) |
|
|
|
|
|
|
|
|
|
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1)) |
|
|
|
else: |
|
return super().set_vocab() |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
if name.startswith("roberta."): |
|
name = name[8:] |
|
|
|
|
|
if name == "embeddings.position_embeddings.weight": |
|
if self._position_offset is not None: |
|
data_torch = data_torch[self._position_offset:,:] |
|
|
|
return super().modify_tensors(data_torch, name, bid) |
|
|
|
|
|
@Model.register("NomicBertModel") |
|
class NomicBertModel(BertModel): |
|
model_arch = gguf.MODEL_ARCH.NOMIC_BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
self.hparams["n_ctx"] = 2048 |
|
|
|
|
|
assert self.hparams["activation_function"] == "swiglu" |
|
|
|
assert self.hparams["causal"] is False |
|
|
|
assert self.hparams["qkv_proj_bias"] is False |
|
assert self.hparams["mlp_fc1_bias"] is False |
|
assert self.hparams["mlp_fc2_bias"] is False |
|
|
|
assert self.hparams["prenorm"] is False |
|
|
|
assert self.hparams["rotary_emb_fraction"] == 1.0 |
|
assert self.hparams["rotary_emb_interleaved"] is False |
|
assert self.hparams["rotary_emb_scale_base"] is None |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) |
|
|
|
|
|
@Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification") |
|
class XLMRobertaModel(BertModel): |
|
model_arch = gguf.MODEL_ARCH.BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
if (pad_token_id := self.hparams.get("pad_token_id")) is not None: |
|
self._position_offset = 1 + pad_token_id |
|
if "max_position_embeddings" in self.hparams: |
|
self.hparams["max_position_embeddings"] -= self._position_offset |
|
else: |
|
self._position_offset = None |
|
|
|
def set_vocab(self): |
|
|
|
|
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
from sentencepiece import SentencePieceProcessor |
|
from sentencepiece import sentencepiece_model_pb2 as model |
|
|
|
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model' |
|
if not tokenizer_path.is_file(): |
|
raise FileNotFoundError(f"File not found: {tokenizer_path}") |
|
|
|
sentencepiece_model = model.ModelProto() |
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) |
|
assert sentencepiece_model.trainer_spec.model_type == 1 |
|
|
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix |
|
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces |
|
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
if vocab_size > len(tokens): |
|
pad_count = vocab_size - len(tokens) |
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") |
|
for i in range(1, pad_count + 1): |
|
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.UNUSED) |
|
|
|
|
|
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1] |
|
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] |
|
toktypes = [ |
|
SentencePieceTokenTypes.CONTROL, |
|
SentencePieceTokenTypes.CONTROL, |
|
SentencePieceTokenTypes.CONTROL, |
|
SentencePieceTokenTypes.UNKNOWN, |
|
] + toktypes[3:-1] |
|
|
|
self.gguf_writer.add_tokenizer_model("t5") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
self.gguf_writer.add_add_space_prefix(add_prefix) |
|
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1)) |
|
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) |
|
if precompiled_charsmap: |
|
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
self.gguf_writer.add_add_bos_token(True) |
|
self.gguf_writer.add_add_eos_token(True) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
if name.startswith("roberta."): |
|
name = name[8:] |
|
|
|
|
|
if name == "embeddings.position_embeddings.weight": |
|
if self._position_offset is not None: |
|
data_torch = data_torch[self._position_offset:,:] |
|
|
|
return super().modify_tensors(data_torch, name, bid) |
|
|
|
|
|
@Model.register("GemmaForCausalLM") |
|
class GemmaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GEMMA |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, |
|
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) |
|
special_vocab._set_special_token("prefix", 67) |
|
special_vocab._set_special_token("suffix", 69) |
|
special_vocab._set_special_token("middle", 68) |
|
special_vocab._set_special_token("fsep", 70) |
|
special_vocab._set_special_token("eot", 107) |
|
special_vocab.chat_template = None |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
self.gguf_writer.add_add_space_prefix(False) |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_key_length(hparams["head_dim"]) |
|
self.gguf_writer.add_value_length(hparams["head_dim"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
|
|
|
|
if name == "lm_head.weight": |
|
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") |
|
return [] |
|
|
|
|
|
if name.endswith("norm.weight"): |
|
data_torch = data_torch + 1 |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("Gemma2ForCausalLM") |
|
class Gemma2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.GEMMA2 |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
self.gguf_writer.add_add_space_prefix(False) |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_key_length(hparams["head_dim"]) |
|
self.gguf_writer.add_value_length(hparams["head_dim"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_attn_logit_softcapping( |
|
self.hparams["attn_logit_softcapping"] |
|
) |
|
self.gguf_writer.add_final_logit_softcapping( |
|
self.hparams["final_logit_softcapping"] |
|
) |
|
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
|
|
|
|
if name == "lm_head.weight": |
|
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") |
|
return [] |
|
|
|
|
|
if name.endswith("norm.weight"): |
|
data_torch = data_torch + 1 |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("Starcoder2ForCausalLM") |
|
class StarCoder2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.STARCODER2 |
|
|
|
|
|
@Model.register("Rwkv6ForCausalLM") |
|
class Rwkv6Model(Model): |
|
model_arch = gguf.MODEL_ARCH.RWKV6 |
|
|
|
def set_vocab(self): |
|
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file() |
|
vocab_size = self.hparams.get("vocab_size", 65536) |
|
|
|
tokens: list[bytes] = ['<s>'.encode("utf-8")] |
|
toktypes: list[int] = [gguf.TokenType.CONTROL] |
|
|
|
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
parts = line.split(' ') |
|
assert len(parts) >= 3 |
|
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1]) |
|
token = token.encode("utf-8") if isinstance(token, str) else token |
|
assert isinstance(token, bytes) |
|
assert len(token) == token_len |
|
token_text: str = repr(token)[2:-1] |
|
tokens.append(token_text.encode("utf-8")) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
remainder = vocab_size - len(tokens) |
|
assert remainder >= 0 |
|
for i in range(len(tokens), vocab_size): |
|
tokens.append(f"[PAD{i}]".encode("utf-8")) |
|
toktypes.append(gguf.TokenType.UNUSED) |
|
|
|
self.gguf_writer.add_tokenizer_model("rwkv") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) |
|
special_vocab.chat_template = "rwkv-world" |
|
|
|
special_vocab._set_special_token("eot", 261) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_size = self.hparams["head_size"] |
|
hidden_size = self.hparams["hidden_size"] |
|
layer_norm_eps = self.hparams["layer_norm_epsilon"] |
|
rescale_every_n_layers = self.hparams["rescale_every"] |
|
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32) |
|
time_mix_extra_dim = 64 if hidden_size == 4096 else 32 |
|
time_decay_extra_dim = 128 if hidden_size == 4096 else 64 |
|
|
|
|
|
self.gguf_writer.add_context_length(1048576) |
|
self.gguf_writer.add_embedding_length(hidden_size) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_layer_norm_eps(layer_norm_eps) |
|
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers) |
|
self.gguf_writer.add_wkv_head_size(head_size) |
|
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim) |
|
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim) |
|
self.gguf_writer.add_feed_forward_length(intermediate_size) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
|
|
self.gguf_writer.add_head_count(0) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
new_name = self.map_tensor_name(name) |
|
|
|
if not (new_name.endswith(".weight") or new_name.endswith(".bias")): |
|
new_name += ".weight" |
|
|
|
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"): |
|
data_torch = data_torch.transpose(0, 1) |
|
|
|
if new_name.endswith("time_mix_w2.weight"): |
|
data_torch = data_torch.permute(0, 2, 1) |
|
|
|
if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name: |
|
data_torch = data_torch.squeeze() |
|
|
|
rescale_every_n_layers = self.hparams["rescale_every"] |
|
if rescale_every_n_layers > 0: |
|
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"): |
|
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers)) |
|
|
|
yield (new_name, data_torch) |
|
|
|
|
|
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM") |
|
class MambaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MAMBA |
|
|
|
def set_vocab(self): |
|
vocab_size = self.hparams["vocab_size"] |
|
|
|
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8) |
|
|
|
|
|
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab |
|
self.hparams["vocab_size"] = vocab_size |
|
|
|
if (self.dir_model / "tokenizer.json").is_file(): |
|
self._set_vocab_gpt2() |
|
elif (self.dir_model / "tokenizer.model").is_file(): |
|
self._set_vocab_sentencepiece() |
|
else: |
|
|
|
self._set_vocab_builtin("gpt-neox", vocab_size) |
|
|
|
def set_gguf_parameters(self): |
|
d_model = self.find_hparam(["hidden_size", "d_model"]) |
|
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 |
|
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model |
|
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16 |
|
|
|
|
|
|
|
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) |
|
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 |
|
use_dt_b_c_norm = False |
|
|
|
if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",): |
|
use_dt_b_c_norm = True |
|
|
|
assert d_inner == 2 * d_model |
|
|
|
self.gguf_writer.add_context_length(2**20) |
|
self.gguf_writer.add_embedding_length(d_model) |
|
self.gguf_writer.add_feed_forward_length(0) |
|
self.gguf_writer.add_head_count(0) |
|
self.gguf_writer.add_block_count(self.block_count) |
|
self.gguf_writer.add_ssm_conv_kernel(d_conv) |
|
self.gguf_writer.add_ssm_inner_size(d_inner) |
|
self.gguf_writer.add_ssm_state_size(d_state) |
|
self.gguf_writer.add_ssm_time_step_rank(dt_rank) |
|
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps) |
|
self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
_tok_embd = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT) |
|
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD) |
|
|
|
new_name = self.map_tensor_name(name) |
|
|
|
if name.endswith(".A_log"): |
|
logger.debug("A_log --> A ==> " + new_name) |
|
data_torch = -torch.exp(data_torch) |
|
|
|
|
|
if self._tok_embd is not None and new_name == output_name: |
|
if torch.equal(self._tok_embd, data_torch): |
|
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") |
|
return [] |
|
elif new_name == tok_embd_name: |
|
self._tok_embd = data_torch |
|
|
|
return [(new_name, data_torch)] |
|
|
|
|
|
@Model.register("CohereForCausalLM") |
|
class CommandR2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.COMMAND_R |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"]) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) |
|
|
|
|
|
@Model.register("OlmoForCausalLM") |
|
@Model.register("OLMoForCausalLM") |
|
class OlmoModel(Model): |
|
model_arch = gguf.MODEL_ARCH.OLMO |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
clip_qkv = self.hparams.get("clip_qkv") |
|
if clip_qkv is not None: |
|
self.gguf_writer.add_clamp_kqv(clip_qkv) |
|
|
|
|
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
if name.endswith("q_proj.weight"): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head) |
|
if name.endswith("k_proj.weight"): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("Olmo2ForCausalLM") |
|
class Olmo2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.OLMO2 |
|
|
|
|
|
@Model.register("OlmoeForCausalLM") |
|
class OlmoeModel(Model): |
|
model_arch = gguf.MODEL_ARCH.OLMOE |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_layer_norm_rms_eps(1e-5) |
|
if (n_experts := self.hparams.get("num_experts")) is not None: |
|
self.gguf_writer.add_expert_count(n_experts) |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
if name.find("experts") != -1: |
|
n_experts = self.hparams["num_experts"] |
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for w_name in ["down_proj", "gate_proj", "up_proj"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("JinaBertModel", "JinaBertForMaskedLM") |
|
class JinaBertV2Model(BertModel): |
|
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.intermediate_size = self.hparams["intermediate_size"] |
|
|
|
def get_tensors(self): |
|
for name, data in super().get_tensors(): |
|
if 'gated_layer' in name: |
|
d1 = data[:self.intermediate_size, :] |
|
name1 = name.replace('gated_layers', 'gated_layers_w') |
|
name1 = name1.replace('up_gated_layer', 'gated_layers_v') |
|
d2 = data[self.intermediate_size:, :] |
|
name2 = name.replace('gated_layers', 'gated_layers_v') |
|
name2 = name2.replace('up_gated_layer', 'gated_layers_w') |
|
yield name1, d1 |
|
yield name2, d2 |
|
continue |
|
|
|
yield name, data |
|
|
|
def set_vocab(self): |
|
tokenizer_class = 'BertTokenizer' |
|
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f: |
|
tokenizer_class = json.load(f)['tokenizer_class'] |
|
|
|
if tokenizer_class == 'BertTokenizer': |
|
super().set_vocab() |
|
elif tokenizer_class == 'RobertaTokenizer': |
|
self._set_vocab_gpt2() |
|
self.gguf_writer.add_token_type_count(2) |
|
else: |
|
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel') |
|
self.gguf_writer.add_add_bos_token(True) |
|
self.gguf_writer.add_add_eos_token(True) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
if name.startswith("bert."): |
|
name = name[5:] |
|
|
|
return super().modify_tensors(data_torch, name, bid) |
|
|
|
|
|
@Model.register("OpenELMForCausalLM") |
|
class OpenELMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.OPENELM |
|
|
|
@staticmethod |
|
def _make_divisible(v: float | int, divisor: int) -> int: |
|
|
|
new_v = max(divisor, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
ffn_multipliers: list[float] = self.hparams["ffn_multipliers"] |
|
ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"] |
|
self._n_embd: int = self.hparams["model_dim"] |
|
self._num_kv_heads: list[int] = self.hparams["num_kv_heads"] |
|
self._num_query_heads: list[int] = self.hparams["num_query_heads"] |
|
self._ffn_dims: list[int] = [ |
|
OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor) |
|
for multiplier in ffn_multipliers |
|
] |
|
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) |
|
assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int) |
|
|
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"]) |
|
|
|
def set_gguf_parameters(self): |
|
n_embd = self._n_embd |
|
head_dim = self.hparams["head_dim"] |
|
rot_pct = 1.0 |
|
assert self.block_count == len(self._num_kv_heads) |
|
assert self.block_count == len(self._num_query_heads) |
|
assert self.block_count == len(self._ffn_dims) |
|
|
|
self.gguf_writer.add_block_count(self.block_count) |
|
self.gguf_writer.add_context_length(self.hparams["max_context_length"]) |
|
self.gguf_writer.add_embedding_length(n_embd) |
|
self.gguf_writer.add_feed_forward_length(self._ffn_dims) |
|
self.gguf_writer.add_head_count(self._num_query_heads) |
|
self.gguf_writer.add_head_count_kv(self._num_kv_heads) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"]) |
|
|
|
self.gguf_writer.add_layer_norm_rms_eps(1e-6) |
|
self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim)) |
|
self.gguf_writer.add_key_length(head_dim) |
|
self.gguf_writer.add_value_length(head_dim) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: |
|
if "n_layers" in keys: |
|
return self.hparams["num_transformer_layers"] |
|
|
|
return super().find_hparam(keys, optional) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight": |
|
ff_dim = self._ffn_dims[bid] |
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]) |
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]) |
|
return |
|
|
|
yield (self.map_tensor_name(name), data_torch) |
|
|
|
|
|
@Model.register("ArcticForCausalLM") |
|
class ArcticModel(Model): |
|
model_arch = gguf.MODEL_ARCH.ARCTIC |
|
|
|
def set_vocab(self): |
|
|
|
|
|
|
|
from sentencepiece import SentencePieceProcessor |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
logger.error(f'Error: Missing {tokenizer_path}') |
|
sys.exit(1) |
|
|
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
|
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
|
|
|
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' |
|
if tokenizer_config_file.is_file(): |
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f: |
|
tokenizer_config_json = json.load(f) |
|
|
|
if "added_tokens_decoder" in tokenizer_config_json: |
|
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"] |
|
for token_id, token_json in added_tokens_decoder.items(): |
|
token_id = int(token_id) |
|
if token_id >= vocab_size: |
|
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
token_content = token_json["content"] |
|
token_type = SentencePieceTokenTypes.USER_DEFINED |
|
token_score = -10000.0 |
|
|
|
|
|
|
|
if ("special" in token_json) and token_json["special"]: |
|
if token_content == tokenizer_config_json["unk_token"]: |
|
token_type = SentencePieceTokenTypes.UNKNOWN |
|
else: |
|
token_type = SentencePieceTokenTypes.CONTROL |
|
token_score = 0.0 |
|
|
|
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})") |
|
tokens[token_id] = token_content.encode("utf-8") |
|
toktypes[token_id] = token_type |
|
scores[token_id] = token_score |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
if name.endswith("q_proj.weight"): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head) |
|
if name.endswith("k_proj.weight"): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) |
|
|
|
|
|
if name.find("block_sparse_moe.experts") != -1: |
|
n_experts = self.hparams["num_local_experts"] |
|
|
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for wid in ["w1", "w2", "w3"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("DeepseekForCausalLM") |
|
class DeepseekModel(Model): |
|
model_arch = gguf.MODEL_ARCH.DEEPSEEK |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
self._set_vocab_gpt2() |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
if "head_dim" in hparams: |
|
rope_dim = hparams["head_dim"] |
|
else: |
|
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] |
|
|
|
self.gguf_writer.add_rope_dimension_count(rope_dim) |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) |
|
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) |
|
self.gguf_writer.add_expert_weights_scale(1.0) |
|
self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) |
|
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
@staticmethod |
|
def permute(weights: Tensor, n_head: int, n_head_kv: int | None): |
|
if n_head_kv is not None and n_head != n_head_kv: |
|
n_head = n_head_kv |
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
|
|
if name.endswith(("q_proj.weight", "q_proj.bias")): |
|
data_torch = DeepseekModel.permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight", "k_proj.bias")): |
|
data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head) |
|
|
|
|
|
if name.find("mlp.experts") != -1: |
|
n_experts = self.hparams["n_routed_experts"] |
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for w_name in ["down_proj", "gate_proj", "up_proj"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("DeepseekV2ForCausalLM") |
|
class DeepseekV2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.DEEPSEEK2 |
|
|
|
def set_vocab(self): |
|
self._set_vocab_gpt2() |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
|
|
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: |
|
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) |
|
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) |
|
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) |
|
self.gguf_writer.add_value_length(hparams["v_head_dim"]) |
|
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) |
|
self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) |
|
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) |
|
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) |
|
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "yarn": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"]) |
|
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"]) |
|
|
|
_experts: list[dict[str, Tensor]] | None = None |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
if name.find("mlp.experts") != -1: |
|
n_experts = self.hparams["n_routed_experts"] |
|
assert bid is not None |
|
|
|
if self._experts is None: |
|
self._experts = [{} for _ in range(self.block_count)] |
|
|
|
self._experts[bid][name] = data_torch |
|
|
|
if len(self._experts[bid]) >= n_experts * 3: |
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
for w_name in ["down_proj", "gate_proj", "up_proj"]: |
|
datas: list[Tensor] = [] |
|
|
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
datas.append(self._experts[bid][ename]) |
|
del self._experts[bid][ename] |
|
|
|
data_torch = torch.stack(datas, dim=0) |
|
|
|
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" |
|
|
|
new_name = self.map_tensor_name(merged_name) |
|
|
|
tensors.append((new_name, data_torch)) |
|
return tensors |
|
else: |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
|
|
if self._experts is not None: |
|
|
|
experts = [k for d in self._experts for k in d.keys()] |
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts}") |
|
|
|
|
|
@Model.register("T5WithLMHeadModel") |
|
@Model.register("T5ForConditionalGeneration") |
|
@Model.register("MT5ForConditionalGeneration") |
|
@Model.register("UMT5ForConditionalGeneration") |
|
class T5Model(Model): |
|
model_arch = gguf.MODEL_ARCH.T5 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.shared_token_embeddings_found = False |
|
|
|
def set_vocab(self): |
|
|
|
|
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
from sentencepiece import SentencePieceProcessor |
|
from sentencepiece import sentencepiece_model_pb2 as model |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
|
|
if not tokenizer_path.is_file(): |
|
tokenizer_path = self.dir_model / 'spiece.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
raise FileNotFoundError(f"File not found: {tokenizer_path}") |
|
|
|
sentencepiece_model = model.ModelProto() |
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) |
|
|
|
|
|
if sentencepiece_model.trainer_spec.model_type == 2: |
|
|
|
assert tokenizer_path.name == 'tokenizer.model' |
|
return self._set_vocab_sentencepiece() |
|
else: |
|
assert sentencepiece_model.trainer_spec.model_type == 1 |
|
|
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix |
|
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces |
|
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
for key in added_tokens_json: |
|
token_id = added_tokens_json[key] |
|
if token_id >= vocab_size: |
|
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
tokens[token_id] = key.encode("utf-8") |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
if vocab_size > len(tokens): |
|
pad_count = vocab_size - len(tokens) |
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") |
|
for i in range(1, pad_count + 1): |
|
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.UNUSED) |
|
|
|
self.gguf_writer.add_tokenizer_model("t5") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
self.gguf_writer.add_add_space_prefix(add_prefix) |
|
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) |
|
if precompiled_charsmap: |
|
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
self.gguf_writer.add_add_bos_token(False) |
|
self.gguf_writer.add_add_eos_token(True) |
|
|
|
def set_gguf_parameters(self): |
|
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: |
|
logger.warning("Couldn't find context length in config.json, assuming default value of 512") |
|
n_ctx = 512 |
|
self.gguf_writer.add_context_length(n_ctx) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_layers"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_heads"]) |
|
self.gguf_writer.add_key_length(self.hparams["d_kv"]) |
|
self.gguf_writer.add_value_length(self.hparams["d_kv"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
|
|
|
|
|
|
|
|
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: |
|
if not self.shared_token_embeddings_found: |
|
name = "shared.weight" |
|
self.shared_token_embeddings_found = True |
|
else: |
|
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("T5EncoderModel") |
|
class T5EncoderModel(Model): |
|
model_arch = gguf.MODEL_ARCH.T5ENCODER |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.shared_token_embeddings_found = False |
|
|
|
def set_vocab(self): |
|
|
|
|
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
from sentencepiece import SentencePieceProcessor |
|
from sentencepiece import sentencepiece_model_pb2 as model |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
|
|
if not tokenizer_path.is_file(): |
|
tokenizer_path = self.dir_model / 'spiece.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
raise FileNotFoundError(f"File not found: {tokenizer_path}") |
|
|
|
sentencepiece_model = model.ModelProto() |
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) |
|
|
|
|
|
if sentencepiece_model.trainer_spec.model_type == 2: |
|
|
|
assert tokenizer_path.name == 'tokenizer.model' |
|
return self._set_vocab_sentencepiece() |
|
else: |
|
assert sentencepiece_model.trainer_spec.model_type == 1 |
|
|
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix |
|
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces |
|
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap |
|
|
|
tokenizer = SentencePieceProcessor() |
|
tokenizer.LoadFromFile(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
piece = tokenizer.IdToPiece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.GetScore(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.IsUnknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.IsControl(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.IsUnused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.IsByte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
for key in added_tokens_json: |
|
token_id = added_tokens_json[key] |
|
if token_id >= vocab_size: |
|
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
tokens[token_id] = key.encode("utf-8") |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
if vocab_size > len(tokens): |
|
pad_count = vocab_size - len(tokens) |
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") |
|
for i in range(1, pad_count + 1): |
|
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.UNUSED) |
|
|
|
self.gguf_writer.add_tokenizer_model("t5") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
self.gguf_writer.add_add_space_prefix(add_prefix) |
|
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) |
|
if precompiled_charsmap: |
|
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
self.gguf_writer.add_add_bos_token(False) |
|
self.gguf_writer.add_add_eos_token(True) |
|
|
|
def set_gguf_parameters(self): |
|
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: |
|
logger.warning("Couldn't find context length in config.json, assuming default value of 512") |
|
n_ctx = 512 |
|
self.gguf_writer.add_context_length(n_ctx) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_layers"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_heads"]) |
|
self.gguf_writer.add_key_length(self.hparams["d_kv"]) |
|
self.gguf_writer.add_value_length(self.hparams["d_kv"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
|
|
|
|
|
|
|
|
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: |
|
if not self.shared_token_embeddings_found: |
|
name = "shared.weight" |
|
self.shared_token_embeddings_found = True |
|
else: |
|
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") |
|
return [] |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("JAISLMHeadModel") |
|
class JaisModel(Model): |
|
model_arch = gguf.MODEL_ARCH.JAIS |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
assert self.hparams["activation_function"] == "swiglu" |
|
|
|
assert self.hparams["position_embedding_type"] == "alibi" |
|
|
|
|
|
self.embeddings_scale = 1.0 |
|
if 'mup_embeddings_scale' in self.hparams: |
|
self.embeddings_scale = self.hparams['mup_embeddings_scale'] |
|
elif 'embeddings_scale' in self.hparams: |
|
self.embeddings_scale = self.hparams['embeddings_scale'] |
|
else: |
|
assert False |
|
|
|
self.width_scale = 1.0 |
|
if 'mup_output_alpha' in self.hparams: |
|
assert 'mup_width_scale' in self.hparams |
|
self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale'] |
|
elif 'width_scale' in self.hparams: |
|
self.width_scale = self.hparams['width_scale'] |
|
else: |
|
assert False |
|
|
|
self.max_alibi_bias = 8.0 |
|
|
|
def set_vocab(self): |
|
self._set_vocab_gpt2() |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"]) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
tensors: list[tuple[str, Tensor]] = [] |
|
|
|
|
|
if name.endswith((".attn.bias")): |
|
return tensors |
|
|
|
if name.endswith(("relative_pe.slopes")): |
|
|
|
|
|
|
|
|
|
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) |
|
first_val = float(data_torch[0].item()) |
|
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) |
|
|
|
return tensors |
|
|
|
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")): |
|
data_torch = data_torch.transpose(1, 0) |
|
|
|
new_name = self.map_tensor_name(name) |
|
|
|
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): |
|
tensors.append((new_name, data_torch * self.embeddings_scale)) |
|
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): |
|
tensors.append((new_name, data_torch * self.width_scale)) |
|
else: |
|
tensors.append((new_name, data_torch)) |
|
|
|
return tensors |
|
|
|
def prepare_tensors(self): |
|
super().prepare_tensors() |
|
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) |
|
|
|
|
|
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration") |
|
class ChatGLMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.CHATGLM |
|
|
|
def set_vocab_chatglm3(self): |
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
tokens: list[bytes] = [] |
|
toktypes: list[int] = [] |
|
scores: list[float] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab())) |
|
assert max(tokenizer.get_vocab().values()) < vocab_size |
|
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] |
|
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens |
|
for token_id in range(vocab_size): |
|
piece = tokenizer._convert_id_to_token(token_id) |
|
if token_id == 0: |
|
piece = "<unk>" |
|
elif token_id == 1: |
|
piece = "<bos>" |
|
elif token_id == 2: |
|
piece = "<eos>" |
|
|
|
text = piece.encode("utf-8") |
|
score = 0.0 |
|
|
|
|
|
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): |
|
score = tokenizer.tokenizer.sp_model.get_score(token_id) |
|
|
|
if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): |
|
if piece in special_tokens: |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif len(piece) == 0: |
|
text = f"[PAD{token_id}]".encode("utf-8") |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
else: |
|
toktype = SentencePieceTokenTypes.USER_DEFINED |
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
continue |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.tokenizer.sp_model.is_unknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.tokenizer.sp_model.is_control(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.tokenizer.sp_model.is_unused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.tokenizer.sp_model.is_byte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
|
|
|
|
self.gguf_writer.add_tokenizer_pre("chatglm-spm") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
@staticmethod |
|
def token_bytes_to_string(b): |
|
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode |
|
byte_encoder = bytes_to_unicode() |
|
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) |
|
|
|
@staticmethod |
|
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: |
|
parts = [bytes([b]) for b in token] |
|
while True: |
|
min_idx = None |
|
min_rank = None |
|
for i, pair in enumerate(zip(parts[:-1], parts[1:])): |
|
rank = mergeable_ranks.get(pair[0] + pair[1]) |
|
if rank is not None and (min_rank is None or rank < min_rank): |
|
min_idx = i |
|
min_rank = rank |
|
if min_rank is None or (max_rank is not None and min_rank >= max_rank): |
|
break |
|
assert min_idx is not None |
|
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] |
|
return parts |
|
|
|
def set_vocab(self): |
|
if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""): |
|
self.set_vocab_chatglm3() |
|
return |
|
|
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
tokens: list[str] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
vocab_size = hparams["padded_vocab_size"] |
|
assert max(tokenizer.get_vocab().values()) < vocab_size |
|
|
|
tokpre = self.get_vocab_base_pre(tokenizer) |
|
|
|
merges = [] |
|
vocab = {} |
|
mergeable_ranks = tokenizer.mergeable_ranks |
|
for token, rank in mergeable_ranks.items(): |
|
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank |
|
if len(token) == 1: |
|
continue |
|
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank) |
|
assert len(merged) >= 2 and len(merged) <= 7 |
|
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged))) |
|
|
|
|
|
added_vocab = tokenizer.get_added_vocab() |
|
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} |
|
|
|
for i in range(vocab_size): |
|
if i not in reverse_vocab: |
|
tokens.append(f"[PAD{i}]") |
|
toktypes.append(gguf.TokenType.UNUSED) |
|
elif reverse_vocab[i] in added_vocab: |
|
tokens.append(reverse_vocab[i]) |
|
if tokenizer.added_tokens_decoder[i].special: |
|
toktypes.append(gguf.TokenType.CONTROL) |
|
else: |
|
toktypes.append(gguf.TokenType.USER_DEFINED) |
|
else: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
|
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) |
|
special_vocab.merges = merges |
|
|
|
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"]) |
|
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) |
|
|
|
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
n_head_kv = self.hparams.get("multi_query_group_num", n_head) |
|
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) |
|
self.gguf_writer.add_embedding_length(n_embed) |
|
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed)) |
|
self.gguf_writer.add_block_count(self.hparams["num_layers"]) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_rope_dimension_count(64) |
|
self.gguf_writer.add_add_bos_token(False) |
|
rope_freq = 10000 |
|
if "rope_ratio" in self.hparams: |
|
rope_freq = rope_freq * self.hparams["rope_ratio"] |
|
self.gguf_writer.add_rope_freq_base(rope_freq) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
del bid |
|
|
|
if name.endswith(".rotary_pos_emb.inv_freq"): |
|
return [] |
|
|
|
name = name.removeprefix("transformer.") |
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("NemotronForCausalLM") |
|
class NemotronModel(Model): |
|
model_arch = gguf.MODEL_ARCH.NEMOTRON |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
self.gguf_writer.add_pad_token_id(0) |
|
self.gguf_writer.add_unk_token_id(1) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
|
|
f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"]) |
|
self.gguf_writer.add_layer_norm_eps(f_norm_eps) |
|
|
|
|
|
rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"]) |
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) |
|
|
|
|
|
if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None: |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) |
|
else: |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"]) |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
|
|
|
|
if name.endswith("norm.weight"): |
|
data_torch = data_torch + 1 |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@Model.register("ExaoneForCausalLM") |
|
class ExaoneModel(Model): |
|
model_arch = gguf.MODEL_ARCH.EXAONE |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
|
|
assert (hparams["activation_function"] == "silu") |
|
|
|
max_position_embeddings = hparams["max_position_embeddings"] |
|
embed_dim = hparams["hidden_size"] |
|
num_heads = hparams["num_attention_heads"] |
|
num_kv_heads = hparams.get("num_key_value_heads", num_heads) |
|
layer_norm_eps = hparams["layer_norm_epsilon"] |
|
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim |
|
num_layers = hparams["num_layers"] |
|
|
|
|
|
|
|
|
|
self.gguf_writer.add_embedding_length(embed_dim) |
|
self.gguf_writer.add_head_count(num_heads) |
|
self.gguf_writer.add_head_count_kv(num_kv_heads) |
|
self.gguf_writer.add_context_length(max_position_embeddings) |
|
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) |
|
self.gguf_writer.add_feed_forward_length(intermediate_size) |
|
self.gguf_writer.add_block_count(num_layers) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
if (rope_theta := self.hparams.get("rope_theta")) is not None: |
|
self.gguf_writer.add_rope_freq_base(rope_theta) |
|
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) |
|
rotary_factor = rotary_factor if rotary_factor is not None else 1.0 |
|
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) |
|
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]: |
|
if hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) |
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: |
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): |
|
if rope_scaling.get("rope_type", '').lower() == "llama3": |
|
base = self.hparams.get("rope_theta", 10000.0) |
|
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) |
|
|
|
factor = rope_scaling.get("factor", 8.0) |
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) |
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) |
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192) |
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor |
|
high_freq_wavelen = old_context_len / high_freq_factor |
|
assert low_freq_wavelen != high_freq_wavelen |
|
|
|
rope_factors = [] |
|
for freq in freqs: |
|
wavelen = 2 * math.pi / freq |
|
if wavelen < high_freq_wavelen: |
|
rope_factors.append(1) |
|
elif wavelen > low_freq_wavelen: |
|
rope_factors.append(factor) |
|
else: |
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) |
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth)) |
|
|
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) |
|
|
|
|
|
@Model.register("GraniteForCausalLM") |
|
class GraniteModel(LlamaModel): |
|
"""Conversion for IBM's GraniteForCausalLM""" |
|
model_arch = gguf.MODEL_ARCH.GRANITE |
|
|
|
def set_gguf_parameters(self): |
|
"""Granite uses standard llama parameters with the following differences: |
|
|
|
- No head_dim support |
|
- New multiplier params: |
|
- attention_scale |
|
- embedding_scale |
|
- residual_scale |
|
- logits_scaling |
|
""" |
|
if head_dim := self.hparams.pop("head_dim", None): |
|
logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim) |
|
super().set_gguf_parameters() |
|
|
|
|
|
if attention_scale := self.hparams.get("attention_multiplier"): |
|
self.gguf_writer.add_attention_scale(attention_scale) |
|
logger.info("gguf: (granite) attention_scale = %s", attention_scale) |
|
if embedding_scale := self.hparams.get("embedding_multiplier"): |
|
self.gguf_writer.add_embedding_scale(embedding_scale) |
|
logger.info("gguf: (granite) embedding_scale = %s", embedding_scale) |
|
if residual_scale := self.hparams.get("residual_multiplier"): |
|
self.gguf_writer.add_residual_scale(residual_scale) |
|
logger.info("gguf: (granite) residual_scale = %s", residual_scale) |
|
if logits_scale := self.hparams.get("logits_scaling"): |
|
self.gguf_writer.add_logit_scale(logits_scale) |
|
logger.info("gguf: (granite) logits_scale = %s", logits_scale) |
|
|
|
|
|
@Model.register("GraniteMoeForCausalLM") |
|
class GraniteMoeModel(GraniteModel): |
|
"""Conversion for IBM's GraniteMoeForCausalLM""" |
|
model_arch = gguf.MODEL_ARCH.GRANITE_MOE |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
"""In modeling_granitemoe, the JetMoe implementation of parallel experts |
|
is used. This essentially merges w1 and w3 into a single tensor with 2x |
|
the hidden size that is then split during forward. To keep compatibility |
|
with existing mixtral support, we pull them apart here. |
|
""" |
|
|
|
if name.endswith("block_sparse_moe.input_linear.weight"): |
|
ffn_dim = self.hparams["intermediate_size"] |
|
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size" |
|
gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :] |
|
return [ |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate), |
|
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up), |
|
] |
|
|
|
return super().modify_tensors(data_torch, name, bid) |
|
|
|
|
|
@Model.register("ChameleonForConditionalGeneration") |
|
@Model.register("ChameleonForCausalLM") |
|
class ChameleonModel(Model): |
|
model_arch = gguf.MODEL_ARCH.CHAMELEON |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False)) |
|
|
|
def set_vocab(self): |
|
self._set_vocab_gpt2() |
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: |
|
|
|
|
|
if name.startswith("model.vqmodel"): |
|
return [] |
|
|
|
n_head = self.hparams["num_attention_heads"] |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
hidden_dim = self.hparams.get("hidden_size") |
|
|
|
if name.endswith(("q_proj.weight", "q_proj.bias")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight", "k_proj.bias")): |
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) |
|
if name.endswith(("q_norm.weight", "q_norm.bias")): |
|
data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim) |
|
if name.endswith(("k_norm.weight", "k_norm.bias")): |
|
data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim) |
|
|
|
return [(self.map_tensor_name(name), data_torch)] |
|
|
|
|
|
@staticmethod |
|
def _reverse_hf_permute(data_torch, n_heads, hidden_dim): |
|
head_dim = hidden_dim // n_heads |
|
data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1) |
|
data_torch = data_torch.repeat_interleave(n_heads, 0) |
|
return data_torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
class LazyTorchTensor(gguf.LazyBase): |
|
_tensor_type = torch.Tensor |
|
|
|
dtype: torch.dtype |
|
shape: torch.Size |
|
|
|
|
|
_dtype_map: dict[torch.dtype, type] = { |
|
torch.float16: np.float16, |
|
torch.float32: np.float32, |
|
} |
|
|
|
|
|
|
|
|
|
_dtype_str_map: dict[str, torch.dtype] = { |
|
"F64": torch.float64, |
|
"F32": torch.float32, |
|
"BF16": torch.bfloat16, |
|
"F16": torch.float16, |
|
|
|
"I64": torch.int64, |
|
|
|
"I32": torch.int32, |
|
|
|
"I16": torch.int16, |
|
"U8": torch.uint8, |
|
"I8": torch.int8, |
|
"BOOL": torch.bool, |
|
"F8_E4M3": torch.float8_e4m3fn, |
|
"F8_E5M2": torch.float8_e5m2, |
|
} |
|
|
|
def numpy(self) -> gguf.LazyNumpyTensor: |
|
dtype = self._dtype_map[self.dtype] |
|
return gguf.LazyNumpyTensor( |
|
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape), |
|
args=(self,), |
|
func=(lambda s: s.numpy()) |
|
) |
|
|
|
@classmethod |
|
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor: |
|
return torch.empty(size=shape, dtype=dtype, device="meta") |
|
|
|
@classmethod |
|
def from_safetensors_slice(cls, st_slice: Any) -> Tensor: |
|
dtype = cls._dtype_str_map[st_slice.get_dtype()] |
|
shape: tuple[int, ...] = tuple(st_slice.get_shape()) |
|
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:]) |
|
return cast(torch.Tensor, lazy) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
del types |
|
|
|
if kwargs is None: |
|
kwargs = {} |
|
|
|
if func is torch.Tensor.numpy: |
|
return args[0].numpy() |
|
|
|
return cls._wrap_fn(func)(*args, **kwargs) |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser( |
|
description="Convert a huggingface model to a GGML compatible file") |
|
parser.add_argument( |
|
"--vocab-only", action="store_true", |
|
help="extract only the vocab", |
|
) |
|
parser.add_argument( |
|
"--outfile", type=Path, |
|
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", |
|
) |
|
parser.add_argument( |
|
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16", |
|
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", |
|
) |
|
parser.add_argument( |
|
"--bigendian", action="store_true", |
|
help="model is executed on big endian machine", |
|
) |
|
parser.add_argument( |
|
"model", type=Path, |
|
help="directory containing model file", |
|
) |
|
parser.add_argument( |
|
"--use-temp-file", action="store_true", |
|
help="use the tempfile library while processing (helpful when running out of memory, process killed)", |
|
) |
|
parser.add_argument( |
|
"--no-lazy", action="store_true", |
|
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)", |
|
) |
|
parser.add_argument( |
|
"--model-name", type=str, default=None, |
|
help="name of the model", |
|
) |
|
parser.add_argument( |
|
"--verbose", action="store_true", |
|
help="increase output verbosity", |
|
) |
|
parser.add_argument( |
|
"--split-max-tensors", type=int, default=0, |
|
help="max tensors in each split", |
|
) |
|
parser.add_argument( |
|
"--split-max-size", type=str, default="0", |
|
help="max size per split N(M|G)", |
|
) |
|
parser.add_argument( |
|
"--dry-run", action="store_true", |
|
help="only print out a split plan and exit, without writing any new files", |
|
) |
|
parser.add_argument( |
|
"--no-tensor-first-split", action="store_true", |
|
help="do not add tensors to the first split (disabled by default)" |
|
) |
|
parser.add_argument( |
|
"--metadata", type=Path, |
|
help="Specify the path for an authorship metadata override file" |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def split_str_to_n_bytes(split_str: str) -> int: |
|
if split_str.endswith("K"): |
|
n = int(split_str[:-1]) * 1000 |
|
elif split_str.endswith("M"): |
|
n = int(split_str[:-1]) * 1000 * 1000 |
|
elif split_str.endswith("G"): |
|
n = int(split_str[:-1]) * 1000 * 1000 * 1000 |
|
elif split_str.isnumeric(): |
|
n = int(split_str) |
|
else: |
|
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G") |
|
|
|
if n < 0: |
|
raise ValueError(f"Invalid split size: {split_str}, must be positive") |
|
|
|
return n |
|
|
|
|
|
def main() -> None: |
|
args = parse_args() |
|
|
|
if args.verbose: |
|
logging.basicConfig(level=logging.DEBUG) |
|
else: |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
dir_model = args.model |
|
|
|
if not dir_model.is_dir(): |
|
logger.error(f'Error: {args.model} is not a directory') |
|
sys.exit(1) |
|
|
|
ftype_map: dict[str, gguf.LlamaFileType] = { |
|
"f32": gguf.LlamaFileType.ALL_F32, |
|
"f16": gguf.LlamaFileType.MOSTLY_F16, |
|
"bf16": gguf.LlamaFileType.MOSTLY_BF16, |
|
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, |
|
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0, |
|
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0, |
|
"auto": gguf.LlamaFileType.GUESSED, |
|
} |
|
|
|
is_split = args.split_max_tensors > 0 or args.split_max_size != "0" |
|
if args.use_temp_file and is_split: |
|
logger.error("Error: Cannot use temp file when splitting") |
|
sys.exit(1) |
|
|
|
if args.outfile is not None: |
|
fname_out = args.outfile |
|
else: |
|
fname_out = dir_model |
|
|
|
logger.info(f"Loading model: {dir_model.name}") |
|
|
|
hparams = Model.load_hparams(dir_model) |
|
|
|
with torch.inference_mode(): |
|
output_type = ftype_map[args.outtype] |
|
model_architecture = hparams["architectures"][0] |
|
|
|
try: |
|
model_class = Model.from_model_architecture(model_architecture) |
|
except NotImplementedError: |
|
logger.error(f"Model {model_architecture} is not supported") |
|
sys.exit(1) |
|
|
|
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out, |
|
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file, |
|
eager=args.no_lazy, |
|
metadata_override=args.metadata, model_name=args.model_name, |
|
split_max_tensors=args.split_max_tensors, |
|
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run, |
|
small_first_shard=args.no_tensor_first_split) |
|
|
|
if args.vocab_only: |
|
logger.info("Exporting model vocab...") |
|
model_instance.write_vocab() |
|
logger.info(f"Model vocab successfully exported to {model_instance.fname_out}") |
|
else: |
|
logger.info("Exporting model...") |
|
model_instance.write() |
|
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out |
|
logger.info(f"Model successfully exported to {out_path}") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|