ymcki's picture
Upload README.md
8531deb verified
|
raw
history blame
6.62 kB
metadata
base_model: google/gemma-2-2b-jpn-it
language:
  - multilingual
datasets:
  - mlabonne/orpo-dpo-mix-40k
library_name: transformers
license: gemma
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
tags:
  - nlp
  - code
quantized_by: ymcki
widget:
  - messages:
      - role: user
        content: Can you provide ways to eat combinations of bananas and dragonfruits?

Original model: https://huggingface.co/google/gemma-2-2b-jpn-it

Prompt format

<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
<end_of_turn>
<start_of_turn>model

Note that this model does not support a System prompt.

Since gemma-2-2b-jpn-it-ablitered-18 is slightly brain damaged compare to the original gemma-2-2b-jpn-it. I decided to try ORPO fine tuning to see if it can be headled.

Using the gemma-2-2b base model, I employed the ORPO method described by mlabonne but the input model was read into VRAM by unsloth to allow using the full 40k dataset to run on a single 3090.

Ten epoches was run. Smallest eval_loss was achieve at epoch 7.00. Checkpoint at epoch 7.00 is used to obtain a model adapter and applied it to gemma-2-2b-jpn-it-ablitered-18 to obtain gemma-2-2b-ORPO-jpn-it-ablitered-18.

Epoch loss eval_loss eval_logps/rejected eval_logps/chosen
1.00 0.9754 1.0344 -1.1506 -0.7516
2.00 0.9629 1.0173 -1.2694 -0.7351
3.00 0.7435 1.0087 -1.4922 -0.7388
4.00 1.0595 1.0026 -1.5920 -0.7310
5.00 1.0525 1.0000 -1.6313 -0.7311
6.00 1.1628 1.0014 -1.7263 -0.7393
7.00 0.8994 0.9971 -1.7264 -0.7324
8.00 0.7448 1.0056 -1.7790 -0.7482
9.00 0.6801 1.0028 -1.7794 -0.7429
10.00 0.9868 1.0069 -1.8065 -0.7505

Then I followed Rombodawg's suggestion to merge gemma-2-2b, gemma-2-2b-ORPO-jpn-it-ablitered-18 and gemma-2-2b-jpn-it-ablitered-18 to obtain this model.

This model is uploaded here to be evaluated by the Open LLM Leaderboard. Further ORPO fine tuning is currently underway to see if it can regain its sanity. You can play with this model first or wait until I am done with the fine tuning.

Benchmark (100.0*raw scores only)

Click on the model name go to the raw score json generated by Open LLM Leaderboard.

Model Average IFEval BHH Math Lv5 GPQA MUSR MMLU-PRO
gemma-2-2b-jpn-it 30.82 54.11 41.43 0.0 27.52 37.17 24.67
gemma-2-2b-ORPO-jpn-it-abliterated-18-merge (5 epoches) 29.26 49.16 38.15 2.49 28.19 33.07 24.51
gemma-2-2b-ORPO-jpn-it-abliterated-18-merge (10 epoches) 30.65 53.81 41.21 0.83 28.36 35.05 24.61
gemma-2-2b-ORPO-jpn-it-abliterated-18 (5 epoches) 29.57 48.05 41.26 0.0 27.18 36.51 24.43
gemma-2-2b-ORPO-jpn-it-abliterated-18 (10 epoches) 29.68 47.76 40.20 0.38 28.86 37.43 23.45
gemma-2-2b-jpn-it-abliterated-17 30.29 52.65 40.46 0.0 27.18 36.90 24.55
gemma-2-2b-jpn-it-abliterated-18 30.61 53.02 40.96 0.0 27.35 37.30 25.05
gemma-2-2b-jpn-it-abliterated-24 30.61 51.37 40.77 0.0 27.77 39.02 24.73
gemma-2-2b-jpn-it-abliterated-17-18-24 29.17 51.33 37.82 0.0 28.10 34.92 22.82

The abliterated-18-merge model is slightly better than the abliterated-18 model but slightly worse than the original instruct model.

How to run this model

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "gemma-2-2b-ORPO-jpn-it-abliterated-18-merge"
dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cuda",
    torch_dtype=dtype,)

chat = [
    { "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

Downloading using huggingface-cli

First, make sure you have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Then, you can target the specific file you want:

huggingface-cli download ymcki/gemma-2-2b-ORPO-jpn-it-abliterated-18-merge --include "*" --local-dir ./

Credits

Thank you mlabonne for describing the ORPO fine tuning method.

Thank you FullOf_Bad_Ideas from LocalLlama for the suggestion of using unsloth to save VRAM.