File size: 5,246 Bytes
114d0fe
f194750
 
 
114d0fe
 
 
 
f194750
 
 
 
 
 
 
 
 
 
114d0fe
f194750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114d0fe
 
 
 
 
f194750
114d0fe
f194750
 
 
 
 
 
114d0fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f194750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114d0fe
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Small GA-EN Speech Translation
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented
      type: ymoslem/IWSLT2023-GA-EN
    metrics:
    - name: Bleu
      type: bleu
      value: 30.9
    - name: Wer
      type: wer
      value: 62.26924808644755
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3822
- Bleu: 30.9
- Chrf: 46.57
- Wer: 62.2692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Bleu  | Chrf  | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:|
| 2.3533        | 0.0438 | 100  | 6.29  | 25.08 | 1.7789          | 148.7618 |
| 1.9035        | 0.0876 | 200  | 18.21 | 34.02 | 1.5122          | 85.6821  |
| 1.5357        | 0.1313 | 300  | 14.01 | 33.7  | 1.3983          | 93.3363  |
| 1.3056        | 0.1751 | 400  | 18.12 | 37.35 | 1.3447          | 95.0023  |
| 1.1177        | 0.2189 | 500  | 18.47 | 38.44 | 1.3168          | 95.3624  |
| 0.984         | 0.2627 | 600  | 26.82 | 41.23 | 1.3202          | 67.3120  |
| 0.8945        | 0.3065 | 700  | 26.73 | 42.53 | 1.2947          | 67.1319  |
| 0.7508        | 0.3503 | 800  | 25.67 | 42.06 | 1.2476          | 74.2008  |
| 0.7127        | 0.3940 | 900  | 22.59 | 41.05 | 1.2630          | 75.7767  |
| 0.5944        | 0.4378 | 1000 | 22.37 | 40.31 | 1.2726          | 82.4854  |
| 0.4972        | 0.4816 | 1100 | 22.88 | 42.52 | 1.2898          | 82.5304  |
| 0.4517        | 0.5254 | 1200 | 27.99 | 44.42 | 1.2509          | 64.1603  |
| 0.3885        | 0.5692 | 1300 | 29.58 | 44.8  | 1.2887          | 63.1247  |
| 0.3337        | 0.6130 | 1400 | 30.05 | 45.5  | 1.2645          | 62.6294  |
| 0.2852        | 0.6567 | 1500 | 28.2  | 43.57 | 1.2972          | 68.6628  |
| 0.2583        | 0.7005 | 1600 | 28.21 | 45.06 | 1.2716          | 73.6155  |
| 0.2016        | 0.7443 | 1700 | 27.55 | 43.21 | 1.3346          | 74.3809  |
| 0.1883        | 0.7881 | 1800 | 21.45 | 41.83 | 1.3124          | 94.1018  |
| 0.1514        | 0.8319 | 1900 | 28.2  | 44.09 | 1.3178          | 63.7551  |
| 0.1311        | 0.8757 | 2000 | 27.33 | 43.25 | 1.3246          | 74.3359  |
| 0.1128        | 0.9194 | 2100 | 25.21 | 42.93 | 1.3464          | 83.2508  |
| 0.0994        | 0.9632 | 2200 | 30.51 | 45.74 | 1.3315          | 64.7456  |
| 0.0512        | 1.0070 | 2300 | 30.89 | 46.44 | 1.3377          | 63.3498  |
| 0.0447        | 1.0508 | 2400 | 28.72 | 44.36 | 1.3587          | 64.3404  |
| 0.0368        | 1.0946 | 2500 | 31.53 | 46.56 | 1.3619          | 61.9541  |
| 0.0281        | 1.1384 | 2600 | 30.98 | 46.45 | 1.3596          | 70.4638  |
| 0.0273        | 1.1821 | 2700 | 32.09 | 46.85 | 1.3656          | 62.1792  |
| 0.0287        | 1.2259 | 2800 | 32.57 | 47.04 | 1.3547          | 62.0891  |
| 0.025         | 1.2697 | 2900 | 26.94 | 45.43 | 1.3539          | 81.1796  |
| 0.0263        | 1.3135 | 3000 | 30.11 | 46.73 | 1.3512          | 71.4993  |
| 0.0301        | 1.3573 | 3100 | 1.3510| 31.14 | 46.93           | 62.0891  |
| 0.0263        | 1.4011 | 3200 | 1.3853| 31.64 | 46.98           | 61.6389  |
| 0.027         | 1.4448 | 3300 | 1.4148| 29.63 | 45.91           | 65.1058  |
| 0.0286        | 1.4886 | 3400 | 1.3828| 30.12 | 46.2            | 62.7195  |
| 0.0218        | 1.5324 | 3500 | 1.3890| 30.41 | 46.28           | 64.8807  |
| 0.0231        | 1.5762 | 3600 | 1.3898| 31.05 | 46.72           | 63.3498  |
| 0.0193        | 1.6200 | 3700 | 1.3836| 30.05 | 45.7            | 62.4944  |
| 0.0184        | 1.6637 | 3800 | 1.3732| 30.95 | 47.17           | 61.8640  |
| 0.0168        | 1.7075 | 3900 | 1.3780| 30.9  | 46.91           | 62.1342  |
| 0.0168        | 1.7513 | 4000 | 1.3822| 30.9  | 46.57           | 62.2692  |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1