--- library_name: transformers tags: [] --- # yokoe/llm-jp-3-13b-finetuned-tengentoppa-ds-wo-unsloth ## How to use ``` import json import os from pathlib import Path import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel from tqdm import tqdm bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( 'llm-jp/llm-jp-3-13b', quantization_config=bnb_config, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained( 'llm-jp/llm-jp-3-13b', trust_remote_code=True, ) model = PeftModel.from_pretrained( model, 'yokoe/llm-jp-3-13b-finetuned-tengentoppa-ds-wo-unsloth', ) # 推論対象データのロード loaded_data = [] with open('./elyza-tasks-100-TV_0.jsonl', 'r') as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): loaded_data.append(json.loads(item)) item = "" # 推論 results = [] for i, data in enumerate(tqdm(loaded_data)): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=1024, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) with open('./elyza-tasks-100-TV_0_preds.jsonl', 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ```