Upload BacterialMorphologyClassification_model.ipynb
Browse files
BacterialMorphologyClassification_model.ipynb
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"id": "AV-1n4EQ4zoM"
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"import tensorflow as tf\n",
|
28 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
29 |
+
"import pandas as pd\n",
|
30 |
+
"import os"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"source": [
|
36 |
+
"#Create an instance of ImageDataGenerator\n",
|
37 |
+
"train_datagen = ImageDataGenerator(rescale=1./255)\n",
|
38 |
+
"val_datagen = ImageDataGenerator(rescale=1./255)\n",
|
39 |
+
"class_labels = {'cocci': 0, 'bacilli': 1, 'spirilla': 2}\n",
|
40 |
+
"\n",
|
41 |
+
"# Load training data from the 'train' folder\n",
|
42 |
+
"# Each subfolder (bacilli, cocci, spirilla) represents a class\n",
|
43 |
+
"train_data = train_datagen.flow_from_directory(\n",
|
44 |
+
" '/content/drive/MyDrive/Bacterial Classification/train', # Path to the train folder\n",
|
45 |
+
" target_size=(224, 224), # Resize all images to 224x224\n",
|
46 |
+
" batch_size=32, # Number of images per batch\n",
|
47 |
+
" class_mode='categorical', # Multi-class classification\n",
|
48 |
+
" classes=class_labels # Explicit class mapping\n",
|
49 |
+
"\n",
|
50 |
+
")\n",
|
51 |
+
"\n",
|
52 |
+
"# Load validation data from the 'validation' folder\n",
|
53 |
+
"# Each subfolder (bacilli, cocci, spirilla) represents a class\n",
|
54 |
+
"val_data = val_datagen.flow_from_directory(\n",
|
55 |
+
" '/content/drive/MyDrive/Bacterial Classification/validation',# Path to the validation folder\n",
|
56 |
+
" target_size=(224, 224),\n",
|
57 |
+
" batch_size=32,\n",
|
58 |
+
" class_mode='categorical',\n",
|
59 |
+
" classes=class_labels\n",
|
60 |
+
"\n",
|
61 |
+
")\n",
|
62 |
+
"\n",
|
63 |
+
"# Check class mappings\n",
|
64 |
+
"print(\"Training Class Indices:\", train_data.class_indices)\n",
|
65 |
+
"print(\"Validation Class Indices:\", val_data.class_indices)\n"
|
66 |
+
],
|
67 |
+
"metadata": {
|
68 |
+
"id": "JoFVIVmJTVPX"
|
69 |
+
},
|
70 |
+
"execution_count": null,
|
71 |
+
"outputs": []
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"source": [
|
76 |
+
"from tensorflow.keras.applications import MobileNetV2\n",
|
77 |
+
"from tensorflow.keras.layers import GlobalAveragePooling2D\n",
|
78 |
+
"from tensorflow.keras.optimizers import Adam\n",
|
79 |
+
"from tensorflow.keras.callbacks import EarlyStopping\n",
|
80 |
+
"\n",
|
81 |
+
"base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n",
|
82 |
+
"base_model.trainable = False # Freeze the base model\n",
|
83 |
+
"\n",
|
84 |
+
"model = tf.keras.Sequential([\n",
|
85 |
+
" base_model,\n",
|
86 |
+
" GlobalAveragePooling2D(),\n",
|
87 |
+
" tf.keras.layers.Dense(128, activation='relu'),\n",
|
88 |
+
" tf.keras.layers.Dropout(0.5),\n",
|
89 |
+
" tf.keras.layers.Dense(3, activation='softmax')\n",
|
90 |
+
"])\n",
|
91 |
+
"\n",
|
92 |
+
"model.compile(\n",
|
93 |
+
" optimizer=Adam(learning_rate=0.0001), # Lower learning rate\n",
|
94 |
+
" loss='categorical_crossentropy',\n",
|
95 |
+
" metrics=['accuracy']\n",
|
96 |
+
")\n",
|
97 |
+
"early_stopping = EarlyStopping(\n",
|
98 |
+
" monitor='val_loss',\n",
|
99 |
+
" patience=3,\n",
|
100 |
+
" restore_best_weights=True\n",
|
101 |
+
")\n",
|
102 |
+
"# Train the model\n",
|
103 |
+
"history = model.fit(\n",
|
104 |
+
" train_data,\n",
|
105 |
+
" validation_data=val_data,\n",
|
106 |
+
" epochs=50, # Allow more epochs but stop early if needed\n",
|
107 |
+
" callbacks=[early_stopping]\n",
|
108 |
+
")\n",
|
109 |
+
"\n",
|
110 |
+
"\n",
|
111 |
+
"# Evaluate the model on the validation dataset\n",
|
112 |
+
"val_loss, val_accuracy = model.evaluate(val_data)\n",
|
113 |
+
"print(f\"Validation Loss: {val_loss}\")\n",
|
114 |
+
"print(f\"Validation Accuracy: {val_accuracy}\")"
|
115 |
+
],
|
116 |
+
"metadata": {
|
117 |
+
"colab": {
|
118 |
+
"base_uri": "https://localhost:8080/"
|
119 |
+
},
|
120 |
+
"id": "2PYZtsrhVGjZ",
|
121 |
+
"outputId": "9d6cef82-2302-48f3-dab6-c7406711c331"
|
122 |
+
},
|
123 |
+
"execution_count": null,
|
124 |
+
"outputs": [
|
125 |
+
{
|
126 |
+
"output_type": "stream",
|
127 |
+
"name": "stdout",
|
128 |
+
"text": [
|
129 |
+
"Epoch 1/50\n"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"output_type": "stream",
|
134 |
+
"name": "stderr",
|
135 |
+
"text": [
|
136 |
+
"/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n",
|
137 |
+
" self._warn_if_super_not_called()\n"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"output_type": "stream",
|
142 |
+
"name": "stdout",
|
143 |
+
"text": [
|
144 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 7s/step - accuracy: 0.3350 - loss: 1.6972 - val_accuracy: 0.3417 - val_loss: 1.3020\n",
|
145 |
+
"Epoch 2/50\n",
|
146 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 182ms/step - accuracy: 0.3816 - loss: 1.3227 - val_accuracy: 0.4750 - val_loss: 1.1209\n",
|
147 |
+
"Epoch 3/50\n",
|
148 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 223ms/step - accuracy: 0.5357 - loss: 0.9564 - val_accuracy: 0.5583 - val_loss: 1.0034\n",
|
149 |
+
"Epoch 4/50\n",
|
150 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 175ms/step - accuracy: 0.5961 - loss: 0.8981 - val_accuracy: 0.5667 - val_loss: 0.9151\n",
|
151 |
+
"Epoch 5/50\n",
|
152 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 226ms/step - accuracy: 0.5730 - loss: 0.9111 - val_accuracy: 0.5833 - val_loss: 0.8556\n",
|
153 |
+
"Epoch 6/50\n",
|
154 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 184ms/step - accuracy: 0.7188 - loss: 0.6853 - val_accuracy: 0.6333 - val_loss: 0.8078\n",
|
155 |
+
"Epoch 7/50\n",
|
156 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 218ms/step - accuracy: 0.7019 - loss: 0.6919 - val_accuracy: 0.6750 - val_loss: 0.7685\n",
|
157 |
+
"Epoch 8/50\n",
|
158 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 236ms/step - accuracy: 0.7730 - loss: 0.5996 - val_accuracy: 0.6833 - val_loss: 0.7381\n",
|
159 |
+
"Epoch 9/50\n",
|
160 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 203ms/step - accuracy: 0.7472 - loss: 0.5987 - val_accuracy: 0.6500 - val_loss: 0.7141\n",
|
161 |
+
"Epoch 10/50\n",
|
162 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 196ms/step - accuracy: 0.7470 - loss: 0.6248 - val_accuracy: 0.6833 - val_loss: 0.6917\n",
|
163 |
+
"Epoch 11/50\n",
|
164 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 223ms/step - accuracy: 0.7687 - loss: 0.5358 - val_accuracy: 0.6833 - val_loss: 0.6693\n",
|
165 |
+
"Epoch 12/50\n",
|
166 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 176ms/step - accuracy: 0.8054 - loss: 0.4860 - val_accuracy: 0.6917 - val_loss: 0.6535\n",
|
167 |
+
"Epoch 13/50\n",
|
168 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 196ms/step - accuracy: 0.8217 - loss: 0.4857 - val_accuracy: 0.6833 - val_loss: 0.6379\n",
|
169 |
+
"Epoch 14/50\n",
|
170 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 245ms/step - accuracy: 0.8586 - loss: 0.4347 - val_accuracy: 0.7000 - val_loss: 0.6292\n",
|
171 |
+
"Epoch 15/50\n",
|
172 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 204ms/step - accuracy: 0.8516 - loss: 0.3888 - val_accuracy: 0.7083 - val_loss: 0.6151\n",
|
173 |
+
"Epoch 16/50\n",
|
174 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 191ms/step - accuracy: 0.8199 - loss: 0.4157 - val_accuracy: 0.7333 - val_loss: 0.6084\n",
|
175 |
+
"Epoch 17/50\n",
|
176 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 228ms/step - accuracy: 0.8377 - loss: 0.4106 - val_accuracy: 0.7250 - val_loss: 0.5958\n",
|
177 |
+
"Epoch 18/50\n",
|
178 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 221ms/step - accuracy: 0.9195 - loss: 0.3326 - val_accuracy: 0.7250 - val_loss: 0.5859\n",
|
179 |
+
"Epoch 19/50\n",
|
180 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 234ms/step - accuracy: 0.8840 - loss: 0.3327 - val_accuracy: 0.7083 - val_loss: 0.5821\n",
|
181 |
+
"Epoch 20/50\n",
|
182 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 207ms/step - accuracy: 0.8947 - loss: 0.3532 - val_accuracy: 0.7333 - val_loss: 0.5776\n",
|
183 |
+
"Epoch 21/50\n",
|
184 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 201ms/step - accuracy: 0.9053 - loss: 0.2998 - val_accuracy: 0.7417 - val_loss: 0.5665\n",
|
185 |
+
"Epoch 22/50\n",
|
186 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 209ms/step - accuracy: 0.9031 - loss: 0.3000 - val_accuracy: 0.7417 - val_loss: 0.5620\n",
|
187 |
+
"Epoch 23/50\n",
|
188 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 185ms/step - accuracy: 0.8956 - loss: 0.2904 - val_accuracy: 0.7333 - val_loss: 0.5560\n",
|
189 |
+
"Epoch 24/50\n",
|
190 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 186ms/step - accuracy: 0.9194 - loss: 0.2869 - val_accuracy: 0.7417 - val_loss: 0.5498\n",
|
191 |
+
"Epoch 25/50\n",
|
192 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 250ms/step - accuracy: 0.9128 - loss: 0.2674 - val_accuracy: 0.7333 - val_loss: 0.5458\n",
|
193 |
+
"Epoch 26/50\n",
|
194 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 201ms/step - accuracy: 0.9213 - loss: 0.2319 - val_accuracy: 0.7333 - val_loss: 0.5432\n",
|
195 |
+
"Epoch 27/50\n",
|
196 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 189ms/step - accuracy: 0.9412 - loss: 0.2338 - val_accuracy: 0.7500 - val_loss: 0.5397\n",
|
197 |
+
"Epoch 28/50\n",
|
198 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 259ms/step - accuracy: 0.9427 - loss: 0.2247 - val_accuracy: 0.7500 - val_loss: 0.5345\n",
|
199 |
+
"Epoch 29/50\n",
|
200 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 195ms/step - accuracy: 0.9304 - loss: 0.2206 - val_accuracy: 0.7500 - val_loss: 0.5316\n",
|
201 |
+
"Epoch 30/50\n",
|
202 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 201ms/step - accuracy: 0.9419 - loss: 0.2098 - val_accuracy: 0.7500 - val_loss: 0.5289\n",
|
203 |
+
"Epoch 31/50\n",
|
204 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 248ms/step - accuracy: 0.9420 - loss: 0.1824 - val_accuracy: 0.7500 - val_loss: 0.5273\n",
|
205 |
+
"Epoch 32/50\n",
|
206 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 198ms/step - accuracy: 0.9590 - loss: 0.1871 - val_accuracy: 0.7500 - val_loss: 0.5244\n",
|
207 |
+
"Epoch 33/50\n",
|
208 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 223ms/step - accuracy: 0.9613 - loss: 0.1816 - val_accuracy: 0.7417 - val_loss: 0.5233\n",
|
209 |
+
"Epoch 34/50\n",
|
210 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 258ms/step - accuracy: 0.9629 - loss: 0.1428 - val_accuracy: 0.7417 - val_loss: 0.5217\n",
|
211 |
+
"Epoch 35/50\n",
|
212 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 167ms/step - accuracy: 0.9606 - loss: 0.1835 - val_accuracy: 0.7583 - val_loss: 0.5231\n",
|
213 |
+
"Epoch 36/50\n",
|
214 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 234ms/step - accuracy: 0.9366 - loss: 0.1920 - val_accuracy: 0.7500 - val_loss: 0.5246\n",
|
215 |
+
"Epoch 37/50\n",
|
216 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 238ms/step - accuracy: 0.9464 - loss: 0.1747 - val_accuracy: 0.7583 - val_loss: 0.5184\n",
|
217 |
+
"Epoch 38/50\n",
|
218 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 187ms/step - accuracy: 0.9601 - loss: 0.1621 - val_accuracy: 0.7583 - val_loss: 0.5132\n",
|
219 |
+
"Epoch 39/50\n",
|
220 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 184ms/step - accuracy: 0.9691 - loss: 0.1530 - val_accuracy: 0.7583 - val_loss: 0.5097\n",
|
221 |
+
"Epoch 40/50\n",
|
222 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 207ms/step - accuracy: 0.9655 - loss: 0.1480 - val_accuracy: 0.7667 - val_loss: 0.5113\n",
|
223 |
+
"Epoch 41/50\n",
|
224 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 184ms/step - accuracy: 0.9671 - loss: 0.1483 - val_accuracy: 0.7583 - val_loss: 0.5122\n",
|
225 |
+
"Epoch 42/50\n",
|
226 |
+
"\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 207ms/step - accuracy: 0.9775 - loss: 0.1268 - val_accuracy: 0.7583 - val_loss: 0.5124\n",
|
227 |
+
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 284ms/step - accuracy: 0.7763 - loss: 0.4887\n",
|
228 |
+
"Validation Loss: 0.509696900844574\n",
|
229 |
+
"Validation Accuracy: 0.7583333253860474\n"
|
230 |
+
]
|
231 |
+
}
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"source": [
|
237 |
+
"import os\n",
|
238 |
+
"import numpy as np\n",
|
239 |
+
"import pandas as pd\n",
|
240 |
+
"import tensorflow as tf\n",
|
241 |
+
"from tensorflow.keras.utils import load_img, img_to_array\n",
|
242 |
+
"\n",
|
243 |
+
"# Load the file containing test image names\n",
|
244 |
+
"test_images = pd.read_csv('/content/drive/MyDrive/Bacterial Classification/test_filenames.txt', header=None)\n",
|
245 |
+
"test_images.columns = ['Image Name']\n",
|
246 |
+
"\n",
|
247 |
+
"# Path to the test folder containing the images\n",
|
248 |
+
"test_dir = '/content/drive/MyDrive/Bacterial Classification/test'\n",
|
249 |
+
"\n",
|
250 |
+
"# Placeholder for predictions\n",
|
251 |
+
"predictions = []\n",
|
252 |
+
"\n",
|
253 |
+
"# Process each image and predict\n",
|
254 |
+
"for img_name in test_images['Image Name']:\n",
|
255 |
+
" # Construct the full path to the image\n",
|
256 |
+
" img_path = os.path.join(test_dir, img_name)\n",
|
257 |
+
"\n",
|
258 |
+
" # Load and preprocess the image\n",
|
259 |
+
" img = load_img(img_path, target_size=(224, 224)) # Resize image to match the model's input size\n",
|
260 |
+
" img_array = img_to_array(img) / 255.0 # Normalize pixel values\n",
|
261 |
+
" img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n",
|
262 |
+
"\n",
|
263 |
+
" # Make a prediction using the trained model\n",
|
264 |
+
" prediction = model.predict(img_array, verbose=0) # Suppress verbose output\n",
|
265 |
+
" predictions.append(prediction.argmax()) # Append the predicted class index (0, 1, 2)\n",
|
266 |
+
"\n",
|
267 |
+
"# Add predictions to the DataFrame\n",
|
268 |
+
"test_images['Predicted Class'] = predictions"
|
269 |
+
],
|
270 |
+
"metadata": {
|
271 |
+
"id": "Wy-i6rizMrt9"
|
272 |
+
},
|
273 |
+
"execution_count": null,
|
274 |
+
"outputs": []
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"source": [
|
279 |
+
"predictions"
|
280 |
+
],
|
281 |
+
"metadata": {
|
282 |
+
"colab": {
|
283 |
+
"base_uri": "https://localhost:8080/"
|
284 |
+
},
|
285 |
+
"id": "Pt1zSfXsTIlt",
|
286 |
+
"outputId": "145ef195-25ca-450b-bd05-bae27efe6fc5"
|
287 |
+
},
|
288 |
+
"execution_count": null,
|
289 |
+
"outputs": [
|
290 |
+
{
|
291 |
+
"output_type": "execute_result",
|
292 |
+
"data": {
|
293 |
+
"text/plain": [
|
294 |
+
"[0,\n",
|
295 |
+
" 0,\n",
|
296 |
+
" 0,\n",
|
297 |
+
" 0,\n",
|
298 |
+
" 0,\n",
|
299 |
+
" 0,\n",
|
300 |
+
" 0,\n",
|
301 |
+
" 1,\n",
|
302 |
+
" 0,\n",
|
303 |
+
" 0,\n",
|
304 |
+
" 0,\n",
|
305 |
+
" 0,\n",
|
306 |
+
" 0,\n",
|
307 |
+
" 0,\n",
|
308 |
+
" 0,\n",
|
309 |
+
" 0,\n",
|
310 |
+
" 0,\n",
|
311 |
+
" 0,\n",
|
312 |
+
" 0,\n",
|
313 |
+
" 0,\n",
|
314 |
+
" 0,\n",
|
315 |
+
" 0,\n",
|
316 |
+
" 0,\n",
|
317 |
+
" 0,\n",
|
318 |
+
" 0,\n",
|
319 |
+
" 0,\n",
|
320 |
+
" 0,\n",
|
321 |
+
" 0,\n",
|
322 |
+
" 1,\n",
|
323 |
+
" 0,\n",
|
324 |
+
" 0,\n",
|
325 |
+
" 0,\n",
|
326 |
+
" 0,\n",
|
327 |
+
" 0,\n",
|
328 |
+
" 0,\n",
|
329 |
+
" 0,\n",
|
330 |
+
" 0,\n",
|
331 |
+
" 0,\n",
|
332 |
+
" 0,\n",
|
333 |
+
" 1,\n",
|
334 |
+
" 1,\n",
|
335 |
+
" 1,\n",
|
336 |
+
" 2,\n",
|
337 |
+
" 1,\n",
|
338 |
+
" 1,\n",
|
339 |
+
" 1,\n",
|
340 |
+
" 1,\n",
|
341 |
+
" 1,\n",
|
342 |
+
" 1,\n",
|
343 |
+
" 1,\n",
|
344 |
+
" 1,\n",
|
345 |
+
" 1,\n",
|
346 |
+
" 0,\n",
|
347 |
+
" 1,\n",
|
348 |
+
" 1,\n",
|
349 |
+
" 2,\n",
|
350 |
+
" 0,\n",
|
351 |
+
" 1,\n",
|
352 |
+
" 1,\n",
|
353 |
+
" 1,\n",
|
354 |
+
" 1,\n",
|
355 |
+
" 1,\n",
|
356 |
+
" 1,\n",
|
357 |
+
" 1,\n",
|
358 |
+
" 1,\n",
|
359 |
+
" 1,\n",
|
360 |
+
" 1,\n",
|
361 |
+
" 2,\n",
|
362 |
+
" 1,\n",
|
363 |
+
" 1,\n",
|
364 |
+
" 1,\n",
|
365 |
+
" 1,\n",
|
366 |
+
" 0,\n",
|
367 |
+
" 1,\n",
|
368 |
+
" 1,\n",
|
369 |
+
" 1,\n",
|
370 |
+
" 1,\n",
|
371 |
+
" 1,\n",
|
372 |
+
" 1,\n",
|
373 |
+
" 1,\n",
|
374 |
+
" 2,\n",
|
375 |
+
" 2,\n",
|
376 |
+
" 2,\n",
|
377 |
+
" 2,\n",
|
378 |
+
" 0,\n",
|
379 |
+
" 2,\n",
|
380 |
+
" 2,\n",
|
381 |
+
" 2,\n",
|
382 |
+
" 2,\n",
|
383 |
+
" 2,\n",
|
384 |
+
" 2,\n",
|
385 |
+
" 2,\n",
|
386 |
+
" 2,\n",
|
387 |
+
" 1,\n",
|
388 |
+
" 2,\n",
|
389 |
+
" 2,\n",
|
390 |
+
" 1,\n",
|
391 |
+
" 2,\n",
|
392 |
+
" 2,\n",
|
393 |
+
" 2,\n",
|
394 |
+
" 2,\n",
|
395 |
+
" 2,\n",
|
396 |
+
" 2,\n",
|
397 |
+
" 1,\n",
|
398 |
+
" 1,\n",
|
399 |
+
" 2,\n",
|
400 |
+
" 1,\n",
|
401 |
+
" 2,\n",
|
402 |
+
" 1,\n",
|
403 |
+
" 2,\n",
|
404 |
+
" 2,\n",
|
405 |
+
" 2,\n",
|
406 |
+
" 1,\n",
|
407 |
+
" 1,\n",
|
408 |
+
" 2,\n",
|
409 |
+
" 2,\n",
|
410 |
+
" 2,\n",
|
411 |
+
" 2,\n",
|
412 |
+
" 2,\n",
|
413 |
+
" 2]"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
"metadata": {},
|
417 |
+
"execution_count": 9
|
418 |
+
}
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"source": [
|
424 |
+
"model.save('/content/drive/MyDrive/Bacterial Classification/saved_model.keras')"
|
425 |
+
],
|
426 |
+
"metadata": {
|
427 |
+
"id": "RfyBMOReTZfR"
|
428 |
+
},
|
429 |
+
"execution_count": null,
|
430 |
+
"outputs": []
|
431 |
+
}
|
432 |
+
]
|
433 |
+
}
|