yoonusajwardapiit commited on
Commit
b0a92e0
·
verified ·
1 Parent(s): aedd0c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -2
README.md CHANGED
@@ -1,9 +1,9 @@
1
-
2
  ---
3
  tags:
4
  - generated_from_triptuner
5
  - transformer
6
  - character-level
 
7
  license: mit
8
  library_name: torch
9
  ---
@@ -15,7 +15,62 @@ It uses a custom transformer-based language model designed to handle character-l
15
 
16
  ## Usage
17
 
18
- The model can generate location-specific itineraries by providing a starting prompt of a location name.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## Training Data
21
 
 
 
1
  ---
2
  tags:
3
  - generated_from_triptuner
4
  - transformer
5
  - character-level
6
+ - custom-model
7
  license: mit
8
  library_name: torch
9
  ---
 
15
 
16
  ## Usage
17
 
18
+ The Triptuner model cannot be directly used with Hugging Face's built-in Inference API because it uses a custom architecture. Below are the instructions on how to manually load and use this model with PyTorch.
19
+
20
+ ### Load and Use the Model with PyTorch
21
+
22
+ ```python
23
+ import torch
24
+
25
+ # Define your custom model class
26
+ class BigramLanguageModel(nn.Module):
27
+ # Include the complete definition of your BigramLanguageModel here
28
+
29
+ # Example method definitions:
30
+ def __init__(self):
31
+ super().__init__()
32
+ # Define your model layers here as per the training setup
33
+ # Example:
34
+ # self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
35
+ # self.position_embedding_table = nn.Embedding(block_size, n_embd)
36
+ # self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
37
+ # self.ln_f = nn.LayerNorm(n_embd)
38
+ # self.lm_head = nn.Linear(n_embd, vocab_size)
39
+
40
+ def forward(self, idx, targets=None):
41
+ # Define the forward pass as per your model
42
+ pass
43
+
44
+ def generate(self, idx, max_new_tokens):
45
+ # Implement the generate method for text generation
46
+ pass
47
+
48
+ # Load the model weights from Hugging Face
49
+ model = BigramLanguageModel()
50
+ model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin"
51
+ model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True)
52
+ model.load_state_dict(model_weights)
53
+ model.eval()
54
+
55
+ # Define your character mappings
56
+ chars = sorted(list(set("your_training_text_here"))) # Replace with the actual character set used in training
57
+ stoi = {ch: i for i, ch in enumerate(chars)}
58
+ itos = {i: ch for i, ch in enumerate(chars)}
59
+ encode = lambda s: [stoi[c] for c in s]
60
+ decode = lambda l: ''.join([itos[i] for i in l])
61
+
62
+ # Test the model with a sample prompt
63
+ prompt = "Hanthana" # Replace with any relevant location or prompt
64
+ context = torch.tensor([encode(prompt)], dtype=torch.long)
65
+
66
+ # Generate text using the model
67
+ with torch.no_grad():
68
+ generated = model.generate(context, max_new_tokens=250) # Adjust the number of new tokens as needed
69
+
70
+ # Decode and print the generated text
71
+ generated_text = decode(generated[0].tolist())
72
+ print(generated_text)
73
+
74
 
75
  ## Training Data
76