--- base_model: llm-jp/llm-jp-3-13b library_name: peft license: apache-2.0 tags: - unsloth - Transformers - trl --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig from peft import PeftModel,PeftConfig import torch HF_TOKEN = "your token" model_name = "llm-jp/llm-jp-3-13b" adapter_name = "yossy0125/llm-jp-3-13b-it_lora/" #QLoRaの量子化に合わせる bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type= "nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) #BaseModel model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config = bnb_config, device_map="auto", token=HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True,token=HF_TOKEN) #adapterをBaseModelに統合 model = PeftModel.from_pretrained(model,adapter_name,token=HF_TOKEN) input = "カレーの具材は何ですか?" prompt = f"""以下はタスクを説明する指示です。 要求を適切に満たす応答を出力しなさい。 ### 指示:{input} ### 応答: """ tokenized_input = tokenizer.encode(prompt,add_special_tokens=False,return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) outputs = None with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=2048, #生成するトークン数 do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):],skip_special_tokens=True) ``` [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2