uplaod the PPO model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 243.42 +/- 34.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b31bc320e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b31bc32170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b31bc32200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b31bc32290>", "_build": "<function ActorCriticPolicy._build at 0x78b31bc32320>", "forward": "<function ActorCriticPolicy.forward at 0x78b31bc323b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b31bc32440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b31bc324d0>", "_predict": "<function ActorCriticPolicy._predict at 0x78b31bc32560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b31bc325f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b31bc32680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b31bc32710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b31bc3c6c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693253111187864333, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADvkD2/dxU/MJjNvXPGjL5hXpm8ChEcvQAAAAAAAAAAgFXGPa7lhbqipYy5OZ0ENurgH7p2cKM4AACAPwAAgD+aoqS8w4EyuhAxjLtCXl62nY8COS/MpDoAAIA/AACAP00buL17QrK67tikOIZepTPNC5o5BFG8twAAgD8AAIA/ZvhnPFyrVLr7MU84fvAfMwXKjbsj9HO3AACAPwAAgD/NqcC8boGVPipcrTwlRD++DZjBPOnLurgAAAAAAAAAALN6P77DqFU7TTqBt6x6pjQ/ZRG96sKaNgAAgD8AAIA/WvDZPeEIkbryyeE6f9kmNo2ytzroygC6AAAAAAAAgD/qLGa+duatP4ZXA78OycC+ADCWvg7Ji70AAAAAAAAAAFrW0L0KN3C5huOvNi0p7zFcOei6jo3MtQAAgD8AAIA/QE2NvUgBibru8Sc7zUVvNpolHDspxUK6AACAPwAAgD/mRsq94fqfN5qvPDd3fx8yVAAIuYUSYLYAAIA/AACAP5ohibwUQLW6K0s8OiV7lzsYMBY80N6LvAAAgD8AAIA/WouYPSGz0T2bh429fRckvuePmL1ckaQ9AAAAAAAAAADA0JY9ehABPx5J8L0G9Yi+MuMuvJxfrjsAAAAAAAAAAI30rj2PVla6XguuOppKmDUjHJm6pgjNuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHpdYOlO46MAWyUTegDjAF0lEdAkfyV6eGwinV9lChoBkdAaDENIbwSamgHTegDaAhHQJH9GuDBdld1fZQoaAZHQGIOUQ04zadoB03oA2gIR0CSBZR5TqB3dX2UKGgGR0Bm7BYaHbh4aAdN6ANoCEdAkghpWvKU3XV9lChoBkdAcHnw4KhL5GgHTS8BaAhHQJINUM/hVEN1fZQoaAZHQGICKFh5PdloB03oA2gIR0CSEVKh+OOsdX2UKGgGR0BjRaYE4ecQaAdN6ANoCEdAkhVT850bLnV9lChoBkdAZzhWo3rD62gHTegDaAhHQJIXjQMQVbl1fZQoaAZHQGJ1lRxcVxloB03oA2gIR0CSIP/Zdv87dX2UKGgGR0BkETPY4ACGaAdN6ANoCEdAkiJe4b0e2nV9lChoBkdAb7nj0cwQDmgHTb0BaAhHQJImGtA9mpV1fZQoaAZHQGHAQlSjxkNoB03oA2gIR0CSJxGfPHDKdX2UKGgGR0BNaI+4b0e2aAdL02gIR0CSJ9jJ+2E1dX2UKGgGR0Bie+OS4e90aAdN6ANoCEdAki2o593KS3V9lChoBkdAZuVdSl3yJGgHTegDaAhHQJI+1trKvFF1fZQoaAZHQGW9xp1zQu5oB03oA2gIR0CSQ/Cxu89PdX2UKGgGR0Bjslf3N9piaAdN6ANoCEdAkkWgQcxTKnV9lChoBkdAZ22etCAtnWgHTegDaAhHQJJGLBEa2nd1fZQoaAZHQGFFGuDBdldoB03oA2gIR0CSR6+Eh7mddX2UKGgGR0Blko593KSxaAdN6ANoCEdAkki548lolHV9lChoBkdASsTpHI6sAGgHS9FoCEdAkk+yDRMN+nV9lChoBkdAZF05rgwXZWgHTegDaAhHQJJQb8k2P1d1fZQoaAZHQHH8fPszEaVoB00jAmgIR0CSUwWOZLIxdX2UKGgGR0BlPwvi97F9aAdN6ANoCEdAklhO+AVfu3V9lChoBkdAYaqUlAu7H2gHTegDaAhHQJJdYwpON5t1fZQoaAZHQGb2aX8fmtBoB03oA2gIR0CSYp9FnZkDdX2UKGgGR0Bwp1i6QNkOaAdNZgNoCEdAkmkWl/H5rXV9lChoBkdAb7yNwzch1WgHTWIDaAhHQJJqludf9gp1fZQoaAZHQGXB1hsqJ/JoB03oA2gIR0CSbO5pJwsHdX2UKGgGR0BhFywpvxYraAdN6ANoCEdAkm3LofSx7nV9lChoBkdAY1xUKiO/+WgHTegDaAhHQJJ2SBjFyaN1fZQoaAZHQGEV3vx6OYJoB03oA2gIR0CSeCx7AtWddX2UKGgGR0BuqjiqABkqaAdNcwNoCEdAkoy+0kWyknV9lChoBkdAYs4SHM2WIGgHTegDaAhHQJKNzaTOgQJ1fZQoaAZHQGUZHmaH9FZoB03oA2gIR0CSkET72tdSdX2UKGgGR0BmQrfpD/lyaAdN6ANoCEdAkpHllbu+iHV9lChoBkdAPdMeXAuZkWgHS8toCEdAkpqht1p0wXV9lChoBkdAYicsDnvDxmgHTegDaAhHQJKdvposZpB1fZQoaAZHQGNYw9q1w5xoB03oA2gIR0CSnuGgzxgBdX2UKGgGR0BlYuHerMkhaAdN6ANoCEdAkqLlNg0CR3V9lChoBkdAZXURNh3JP2gHTegDaAhHQJKpGjZcs191fZQoaAZHQGYHiJ40Mw1oB03oA2gIR0CSrQiJfpljdX2UKGgGR0Bwe7t2LYPHaAdNmQJoCEdAkrEffTCtR3V9lChoBkdAYpSqYqoZRGgHTegDaAhHQJKxIW+GoJl1fZQoaAZHQGxfOlfqoqFoB01KAWgIR0CSsTM3qAz6dX2UKGgGR0AzJB5X2dupaAdL4mgIR0CStY9Q40djdX2UKGgGR0BkrzqOcUdraAdN6ANoCEdAkrXFYU34sXV9lChoBkdAZXR45cTrV2gHTegDaAhHQJK2wb+98JF1fZQoaAZHQGCPVXeWOZNoB03oA2gIR0CSuOopx3mndX2UKGgGR0BkDGHaews5aAdN6ANoCEdAkrmm2b5M13V9lChoBkdALgkkjX4CZGgHTQQBaAhHQJK9nY02tMh1fZQoaAZHQGU4hl18stloB03oA2gIR0CSwqF6zE75dX2UKGgGR0BwpAiiZfD2aAdNugNoCEdAktW+Pikwe3V9lChoBkdAY8kHfMwDeWgHTegDaAhHQJLc8Z75VOt1fZQoaAZHQGDwlE7W/ahoB03oA2gIR0CS3x/+KjzqdX2UKGgGR0BydIVh1DBuaAdNOgJoCEdAkuDp39rGi3V9lChoBkdAcPXUXpGFz2gHTdkBaAhHQJLhmvUz9CN1fZQoaAZHQGI2FY+0PYpoB03oA2gIR0CS6MEfDDTCdX2UKGgGR0Bk890DEFW5aAdN6ANoCEdAkulz3225QXV9lChoBkdAcC4cKw6hg2gHTUQDaAhHQJLrUuL74zt1fZQoaAZHQGdv4eLehwloB03oA2gIR0CS6/05EMLGdX2UKGgGR0BwDKy+pOvdaAdNUAFoCEdAku9VmSQo1HV9lChoBkdAZQ8ZYPoV22gHTegDaAhHQJL3QBQvYe11fZQoaAZHQE5nVVghKUVoB0vKaAhHQJL6CpLmITJ1fZQoaAZHQG/QmkFfReFoB01ZAWgIR0CS+k1BMSK4dX2UKGgGR0BvoR5cC5mRaAdNKgNoCEdAkvsM3AEdNnV9lChoBkdAZekSWZ7Xx2gHTegDaAhHQJL7zaURnOB1fZQoaAZHQGT9/s3Q2MtoB03oA2gIR0CS+/6oVEeAdX2UKGgGR0BiWb0lJHy3aAdN6ANoCEdAkv8vznRsuXV9lChoBkdAZDFU6PsAvWgHTegDaAhHQJL//7P6bfB1fZQoaAZHQHAvH003wTdoB03VAmgIR0CTBKOD8LrpdX2UKGgGR0BxEAzTF2mpaAdN0QJoCEdAkwZW8AaNuXV9lChoBkdAWYx0ZFXq7mgHTegDaAhHQJMJrB68g6l1fZQoaAZHQHDcEpqh11ZoB01GAWgIR0CTCjXBP9DQdX2UKGgGR0Bl2cCo0hvBaAdN6ANoCEdAkwupa3ZwoHV9lChoBkdATt8bFS88LmgHS8VoCEdAkyTfA9FF2HV9lChoBkdAbyxBAv+OwWgHTeABaAhHQJMo2nVG0/p1fZQoaAZHQGF9qf4AS39oB03oA2gIR0CTKvd0q6OHdX2UKGgGR0Bt8zTDwYtQaAdNtgFoCEdAkyz3dKujh3V9lChoBkdAcRi6CDmKZWgHTT8DaAhHQJMtBpUPxx11fZQoaAZHQHFxB1Tzd1xoB01sAWgIR0CTL+2vjfeldX2UKGgGR0BwsRFx4ptraAdNQgFoCEdAkzD//R3NcHV9lChoBkdAcT3fthNM5GgHTY0CaAhHQJMyvyAhB7h1fZQoaAZHQGUUpMxoIv9oB03oA2gIR0CTMtlbu+h5dX2UKGgGR0BjeRn3+MqCaAdN6ANoCEdAkzSicslLOHV9lChoBkdAby/QxesxPGgHTZEBaAhHQJM5QNoakyl1fZQoaAZHQG5awWN3np1oB02CA2gIR0CTOtULDye7dX2UKGgGR0Bykl63RXwLaAdNeQFoCEdAkz1L6LwWnHV9lChoBkdAb5b09QoCuGgHTbUBaAhHQJNChbfP5YZ1fZQoaAZHQHDaWjCYTkBoB00yAWgIR0CTQ9XMQmNSdX2UKGgGR0BkQ6dc0LtvaAdN6ANoCEdAk0SScf/3nXV9lChoBkdAZBYRChN/OWgHTegDaAhHQJNEx2vB7/p1fZQoaAZHQGIxcejmCAdoB03oA2gIR0CTSB6Mir1edX2UKGgGR0BxvuO938oAaAdN6gFoCEdAk0hJjtoi93V9lChoBkdAcLV/ZuhsZmgHTeYBaAhHQJNJBjc2zfJ1fZQoaAZHQG5fD63y7PJoB00aAmgIR0CTTefCQ9zPdX2UKGgGR0BtqZF1B+nZaAdNlwNoCEdAk0/b/GVAzHV9lChoBkdAcpJPU8V58mgHTQMDaAhHQJNQicd5prV1fZQoaAZHQHEaU+xGDthoB015AWgIR0CTUaGX5WRzdX2UKGgGR0BkCLKHO8kEaAdN6ANoCEdAk1aq9PDYRXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69d8b9f2f77129d2880d09057913053746afcaad339ce336b3f7c87905856d5
|
3 |
+
size 146750
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78b31bc320e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b31bc32170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b31bc32200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b31bc32290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78b31bc32320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78b31bc323b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78b31bc32440>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b31bc324d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78b31bc32560>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b31bc325f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b31bc32680>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78b31bc32710>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78b31bc3c6c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693253111187864333,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADvkD2/dxU/MJjNvXPGjL5hXpm8ChEcvQAAAAAAAAAAgFXGPa7lhbqipYy5OZ0ENurgH7p2cKM4AACAPwAAgD+aoqS8w4EyuhAxjLtCXl62nY8COS/MpDoAAIA/AACAP00buL17QrK67tikOIZepTPNC5o5BFG8twAAgD8AAIA/ZvhnPFyrVLr7MU84fvAfMwXKjbsj9HO3AACAPwAAgD/NqcC8boGVPipcrTwlRD++DZjBPOnLurgAAAAAAAAAALN6P77DqFU7TTqBt6x6pjQ/ZRG96sKaNgAAgD8AAIA/WvDZPeEIkbryyeE6f9kmNo2ytzroygC6AAAAAAAAgD/qLGa+duatP4ZXA78OycC+ADCWvg7Ji70AAAAAAAAAAFrW0L0KN3C5huOvNi0p7zFcOei6jo3MtQAAgD8AAIA/QE2NvUgBibru8Sc7zUVvNpolHDspxUK6AACAPwAAgD/mRsq94fqfN5qvPDd3fx8yVAAIuYUSYLYAAIA/AACAP5ohibwUQLW6K0s8OiV7lzsYMBY80N6LvAAAgD8AAIA/WouYPSGz0T2bh429fRckvuePmL1ckaQ9AAAAAAAAAADA0JY9ehABPx5J8L0G9Yi+MuMuvJxfrjsAAAAAAAAAAI30rj2PVla6XguuOppKmDUjHJm6pgjNuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHpdYOlO46MAWyUTegDjAF0lEdAkfyV6eGwinV9lChoBkdAaDENIbwSamgHTegDaAhHQJH9GuDBdld1fZQoaAZHQGIOUQ04zadoB03oA2gIR0CSBZR5TqB3dX2UKGgGR0Bm7BYaHbh4aAdN6ANoCEdAkghpWvKU3XV9lChoBkdAcHnw4KhL5GgHTS8BaAhHQJINUM/hVEN1fZQoaAZHQGICKFh5PdloB03oA2gIR0CSEVKh+OOsdX2UKGgGR0BjRaYE4ecQaAdN6ANoCEdAkhVT850bLnV9lChoBkdAZzhWo3rD62gHTegDaAhHQJIXjQMQVbl1fZQoaAZHQGJ1lRxcVxloB03oA2gIR0CSIP/Zdv87dX2UKGgGR0BkETPY4ACGaAdN6ANoCEdAkiJe4b0e2nV9lChoBkdAb7nj0cwQDmgHTb0BaAhHQJImGtA9mpV1fZQoaAZHQGHAQlSjxkNoB03oA2gIR0CSJxGfPHDKdX2UKGgGR0BNaI+4b0e2aAdL02gIR0CSJ9jJ+2E1dX2UKGgGR0Bie+OS4e90aAdN6ANoCEdAki2o593KS3V9lChoBkdAZuVdSl3yJGgHTegDaAhHQJI+1trKvFF1fZQoaAZHQGW9xp1zQu5oB03oA2gIR0CSQ/Cxu89PdX2UKGgGR0Bjslf3N9piaAdN6ANoCEdAkkWgQcxTKnV9lChoBkdAZ22etCAtnWgHTegDaAhHQJJGLBEa2nd1fZQoaAZHQGFFGuDBdldoB03oA2gIR0CSR6+Eh7mddX2UKGgGR0Blko593KSxaAdN6ANoCEdAkki548lolHV9lChoBkdASsTpHI6sAGgHS9FoCEdAkk+yDRMN+nV9lChoBkdAZF05rgwXZWgHTegDaAhHQJJQb8k2P1d1fZQoaAZHQHH8fPszEaVoB00jAmgIR0CSUwWOZLIxdX2UKGgGR0BlPwvi97F9aAdN6ANoCEdAklhO+AVfu3V9lChoBkdAYaqUlAu7H2gHTegDaAhHQJJdYwpON5t1fZQoaAZHQGb2aX8fmtBoB03oA2gIR0CSYp9FnZkDdX2UKGgGR0Bwp1i6QNkOaAdNZgNoCEdAkmkWl/H5rXV9lChoBkdAb7yNwzch1WgHTWIDaAhHQJJqludf9gp1fZQoaAZHQGXB1hsqJ/JoB03oA2gIR0CSbO5pJwsHdX2UKGgGR0BhFywpvxYraAdN6ANoCEdAkm3LofSx7nV9lChoBkdAY1xUKiO/+WgHTegDaAhHQJJ2SBjFyaN1fZQoaAZHQGEV3vx6OYJoB03oA2gIR0CSeCx7AtWddX2UKGgGR0BuqjiqABkqaAdNcwNoCEdAkoy+0kWyknV9lChoBkdAYs4SHM2WIGgHTegDaAhHQJKNzaTOgQJ1fZQoaAZHQGUZHmaH9FZoB03oA2gIR0CSkET72tdSdX2UKGgGR0BmQrfpD/lyaAdN6ANoCEdAkpHllbu+iHV9lChoBkdAPdMeXAuZkWgHS8toCEdAkpqht1p0wXV9lChoBkdAYicsDnvDxmgHTegDaAhHQJKdvposZpB1fZQoaAZHQGNYw9q1w5xoB03oA2gIR0CSnuGgzxgBdX2UKGgGR0BlYuHerMkhaAdN6ANoCEdAkqLlNg0CR3V9lChoBkdAZXURNh3JP2gHTegDaAhHQJKpGjZcs191fZQoaAZHQGYHiJ40Mw1oB03oA2gIR0CSrQiJfpljdX2UKGgGR0Bwe7t2LYPHaAdNmQJoCEdAkrEffTCtR3V9lChoBkdAYpSqYqoZRGgHTegDaAhHQJKxIW+GoJl1fZQoaAZHQGxfOlfqoqFoB01KAWgIR0CSsTM3qAz6dX2UKGgGR0AzJB5X2dupaAdL4mgIR0CStY9Q40djdX2UKGgGR0BkrzqOcUdraAdN6ANoCEdAkrXFYU34sXV9lChoBkdAZXR45cTrV2gHTegDaAhHQJK2wb+98JF1fZQoaAZHQGCPVXeWOZNoB03oA2gIR0CSuOopx3mndX2UKGgGR0BkDGHaews5aAdN6ANoCEdAkrmm2b5M13V9lChoBkdALgkkjX4CZGgHTQQBaAhHQJK9nY02tMh1fZQoaAZHQGU4hl18stloB03oA2gIR0CSwqF6zE75dX2UKGgGR0BwpAiiZfD2aAdNugNoCEdAktW+Pikwe3V9lChoBkdAY8kHfMwDeWgHTegDaAhHQJLc8Z75VOt1fZQoaAZHQGDwlE7W/ahoB03oA2gIR0CS3x/+KjzqdX2UKGgGR0BydIVh1DBuaAdNOgJoCEdAkuDp39rGi3V9lChoBkdAcPXUXpGFz2gHTdkBaAhHQJLhmvUz9CN1fZQoaAZHQGI2FY+0PYpoB03oA2gIR0CS6MEfDDTCdX2UKGgGR0Bk890DEFW5aAdN6ANoCEdAkulz3225QXV9lChoBkdAcC4cKw6hg2gHTUQDaAhHQJLrUuL74zt1fZQoaAZHQGdv4eLehwloB03oA2gIR0CS6/05EMLGdX2UKGgGR0BwDKy+pOvdaAdNUAFoCEdAku9VmSQo1HV9lChoBkdAZQ8ZYPoV22gHTegDaAhHQJL3QBQvYe11fZQoaAZHQE5nVVghKUVoB0vKaAhHQJL6CpLmITJ1fZQoaAZHQG/QmkFfReFoB01ZAWgIR0CS+k1BMSK4dX2UKGgGR0BvoR5cC5mRaAdNKgNoCEdAkvsM3AEdNnV9lChoBkdAZekSWZ7Xx2gHTegDaAhHQJL7zaURnOB1fZQoaAZHQGT9/s3Q2MtoB03oA2gIR0CS+/6oVEeAdX2UKGgGR0BiWb0lJHy3aAdN6ANoCEdAkv8vznRsuXV9lChoBkdAZDFU6PsAvWgHTegDaAhHQJL//7P6bfB1fZQoaAZHQHAvH003wTdoB03VAmgIR0CTBKOD8LrpdX2UKGgGR0BxEAzTF2mpaAdN0QJoCEdAkwZW8AaNuXV9lChoBkdAWYx0ZFXq7mgHTegDaAhHQJMJrB68g6l1fZQoaAZHQHDcEpqh11ZoB01GAWgIR0CTCjXBP9DQdX2UKGgGR0Bl2cCo0hvBaAdN6ANoCEdAkwupa3ZwoHV9lChoBkdATt8bFS88LmgHS8VoCEdAkyTfA9FF2HV9lChoBkdAbyxBAv+OwWgHTeABaAhHQJMo2nVG0/p1fZQoaAZHQGF9qf4AS39oB03oA2gIR0CTKvd0q6OHdX2UKGgGR0Bt8zTDwYtQaAdNtgFoCEdAkyz3dKujh3V9lChoBkdAcRi6CDmKZWgHTT8DaAhHQJMtBpUPxx11fZQoaAZHQHFxB1Tzd1xoB01sAWgIR0CTL+2vjfeldX2UKGgGR0BwsRFx4ptraAdNQgFoCEdAkzD//R3NcHV9lChoBkdAcT3fthNM5GgHTY0CaAhHQJMyvyAhB7h1fZQoaAZHQGUUpMxoIv9oB03oA2gIR0CTMtlbu+h5dX2UKGgGR0BjeRn3+MqCaAdN6ANoCEdAkzSicslLOHV9lChoBkdAby/QxesxPGgHTZEBaAhHQJM5QNoakyl1fZQoaAZHQG5awWN3np1oB02CA2gIR0CTOtULDye7dX2UKGgGR0Bykl63RXwLaAdNeQFoCEdAkz1L6LwWnHV9lChoBkdAb5b09QoCuGgHTbUBaAhHQJNChbfP5YZ1fZQoaAZHQHDaWjCYTkBoB00yAWgIR0CTQ9XMQmNSdX2UKGgGR0BkQ6dc0LtvaAdN6ANoCEdAk0SScf/3nXV9lChoBkdAZBYRChN/OWgHTegDaAhHQJNEx2vB7/p1fZQoaAZHQGIxcejmCAdoB03oA2gIR0CTSB6Mir1edX2UKGgGR0BxvuO938oAaAdN6gFoCEdAk0hJjtoi93V9lChoBkdAcLV/ZuhsZmgHTeYBaAhHQJNJBjc2zfJ1fZQoaAZHQG5fD63y7PJoB00aAmgIR0CTTefCQ9zPdX2UKGgGR0BtqZF1B+nZaAdNlwNoCEdAk0/b/GVAzHV9lChoBkdAcpJPU8V58mgHTQMDaAhHQJNQicd5prV1fZQoaAZHQHEaU+xGDthoB015AWgIR0CTUaGX5WRzdX2UKGgGR0BkCLKHO8kEaAdN6ANoCEdAk1aq9PDYRXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0039b358835f2f7467fcf0584f4411ae14df7f660df9b069ce94d91ccdeadd36
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f1ce7c88f1e0e40682dd21ecc3a4bf4c05f97e4a6f3ee6a2d9726bfc4bebe84
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (173 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 243.41887000000006, "std_reward": 34.10609429281032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-28T20:27:57.280322"}
|