younggi commited on
Commit
7ddec4b
1 Parent(s): 3354a26

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -52
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.1051
20
- - Accuracy: 0.9677
21
 
22
  ## Model description
23
 
@@ -49,56 +49,56 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 2.3017 | 0.02 | 75 | 2.3034 | 0.1286 |
53
- | 1.9471 | 1.02 | 150 | 1.9157 | 0.3714 |
54
- | 0.9752 | 2.02 | 225 | 0.9294 | 0.6714 |
55
- | 0.4076 | 3.02 | 300 | 0.3997 | 0.8143 |
56
- | 0.4284 | 4.02 | 375 | 0.6502 | 0.7714 |
57
- | 0.1713 | 5.02 | 450 | 0.3226 | 0.8714 |
58
- | 0.4188 | 6.02 | 525 | 0.6348 | 0.8429 |
59
- | 0.0101 | 7.02 | 600 | 0.4137 | 0.9143 |
60
- | 0.0126 | 8.02 | 675 | 0.1349 | 0.9429 |
61
- | 0.0444 | 9.02 | 750 | 1.0845 | 0.8 |
62
- | 0.0023 | 10.02 | 825 | 0.1856 | 0.9 |
63
- | 0.0018 | 11.02 | 900 | 0.2485 | 0.9143 |
64
- | 0.0017 | 12.02 | 975 | 0.0677 | 0.9714 |
65
- | 0.0429 | 13.02 | 1050 | 0.1233 | 0.9286 |
66
- | 0.0035 | 14.02 | 1125 | 0.3002 | 0.9571 |
67
- | 0.0013 | 15.02 | 1200 | 0.1211 | 0.9857 |
68
- | 0.001 | 16.02 | 1275 | 0.1264 | 0.9714 |
69
- | 0.0013 | 17.02 | 1350 | 0.2979 | 0.9429 |
70
- | 0.0714 | 18.02 | 1425 | 0.4232 | 0.9143 |
71
- | 0.0011 | 19.02 | 1500 | 0.3415 | 0.9286 |
72
- | 0.001 | 20.02 | 1575 | 0.1736 | 0.9286 |
73
- | 0.0007 | 21.02 | 1650 | 0.2461 | 0.9429 |
74
- | 0.0008 | 22.02 | 1725 | 0.3369 | 0.9286 |
75
- | 0.0007 | 23.02 | 1800 | 0.1453 | 0.9571 |
76
- | 0.0007 | 24.02 | 1875 | 0.1013 | 0.9857 |
77
- | 0.0006 | 25.02 | 1950 | 0.1100 | 0.9857 |
78
- | 0.0006 | 26.02 | 2025 | 0.1088 | 0.9857 |
79
- | 0.0006 | 27.02 | 2100 | 0.1165 | 0.9714 |
80
- | 0.0006 | 28.02 | 2175 | 0.0660 | 0.9857 |
81
- | 0.0007 | 29.02 | 2250 | 0.2951 | 0.9429 |
82
- | 0.0005 | 30.02 | 2325 | 0.0896 | 0.9857 |
83
- | 0.0007 | 31.02 | 2400 | 0.1059 | 0.9857 |
84
- | 0.0005 | 32.02 | 2475 | 0.0989 | 0.9857 |
85
- | 0.0005 | 33.02 | 2550 | 0.0771 | 0.9857 |
86
- | 0.0005 | 34.02 | 2625 | 0.0759 | 0.9857 |
87
- | 0.0005 | 35.02 | 2700 | 0.0803 | 0.9857 |
88
- | 0.0004 | 36.02 | 2775 | 0.0892 | 0.9857 |
89
- | 0.0004 | 37.02 | 2850 | 0.1913 | 0.9571 |
90
- | 0.0004 | 38.02 | 2925 | 0.4228 | 0.9429 |
91
- | 0.0004 | 39.02 | 3000 | 0.4060 | 0.9429 |
92
- | 0.0004 | 40.02 | 3075 | 0.3824 | 0.9429 |
93
- | 0.0951 | 41.02 | 3150 | 0.4202 | 0.9429 |
94
- | 0.0004 | 42.02 | 3225 | 0.1987 | 0.9571 |
95
- | 0.0004 | 43.02 | 3300 | 0.1764 | 0.9571 |
96
- | 0.0004 | 44.02 | 3375 | 0.1509 | 0.9571 |
97
- | 0.0004 | 45.02 | 3450 | 0.1498 | 0.9571 |
98
- | 0.0004 | 46.02 | 3525 | 0.1441 | 0.9714 |
99
- | 0.0004 | 47.02 | 3600 | 0.1332 | 0.9714 |
100
- | 0.0004 | 48.02 | 3675 | 0.1573 | 0.9714 |
101
- | 0.0003 | 49.02 | 3750 | 0.1616 | 0.9714 |
102
 
103
 
104
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.1834
20
+ - Accuracy: 0.9290
21
 
22
  ## Model description
23
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 2.2357 | 0.02 | 75 | 2.1952 | 0.3429 |
53
+ | 1.8271 | 1.02 | 150 | 1.8570 | 0.3571 |
54
+ | 0.8947 | 2.02 | 225 | 0.8397 | 0.7286 |
55
+ | 0.5347 | 3.02 | 300 | 0.5632 | 0.8286 |
56
+ | 0.4101 | 4.02 | 375 | 0.6908 | 0.8 |
57
+ | 0.0855 | 5.02 | 450 | 0.1541 | 0.9571 |
58
+ | 0.2286 | 6.02 | 525 | 0.2762 | 0.9 |
59
+ | 0.2905 | 7.02 | 600 | 0.2306 | 0.9 |
60
+ | 0.0051 | 8.02 | 675 | 0.2054 | 0.9571 |
61
+ | 0.1142 | 9.02 | 750 | 0.7049 | 0.8714 |
62
+ | 0.0022 | 10.02 | 825 | 0.1919 | 0.9429 |
63
+ | 0.0019 | 11.02 | 900 | 0.5478 | 0.8857 |
64
+ | 0.0021 | 12.02 | 975 | 0.4232 | 0.9286 |
65
+ | 0.0019 | 13.02 | 1050 | 0.5437 | 0.8857 |
66
+ | 0.002 | 14.02 | 1125 | 1.0354 | 0.7857 |
67
+ | 0.0028 | 15.02 | 1200 | 0.1039 | 0.9714 |
68
+ | 0.0013 | 16.02 | 1275 | 0.1552 | 0.9714 |
69
+ | 0.2309 | 17.02 | 1350 | 0.2720 | 0.9286 |
70
+ | 0.1662 | 18.02 | 1425 | 0.0312 | 0.9857 |
71
+ | 0.0199 | 19.02 | 1500 | 0.1478 | 0.9571 |
72
+ | 0.001 | 20.02 | 1575 | 0.2189 | 0.9714 |
73
+ | 0.0009 | 21.02 | 1650 | 0.1568 | 0.9714 |
74
+ | 0.0008 | 22.02 | 1725 | 0.2136 | 0.9429 |
75
+ | 0.0007 | 23.02 | 1800 | 0.1032 | 0.9714 |
76
+ | 0.0007 | 24.02 | 1875 | 0.1026 | 0.9714 |
77
+ | 0.0006 | 25.02 | 1950 | 0.1130 | 0.9571 |
78
+ | 0.0006 | 26.02 | 2025 | 0.1147 | 0.9714 |
79
+ | 0.0006 | 27.02 | 2100 | 0.0858 | 0.9857 |
80
+ | 0.0006 | 28.02 | 2175 | 0.0868 | 0.9857 |
81
+ | 0.0006 | 29.02 | 2250 | 0.0880 | 0.9857 |
82
+ | 0.0005 | 30.02 | 2325 | 0.0872 | 0.9857 |
83
+ | 0.0005 | 31.02 | 2400 | 0.0901 | 0.9857 |
84
+ | 0.0005 | 32.02 | 2475 | 0.0894 | 0.9857 |
85
+ | 0.0005 | 33.02 | 2550 | 0.0858 | 0.9857 |
86
+ | 0.0005 | 34.02 | 2625 | 0.0912 | 0.9857 |
87
+ | 0.0005 | 35.02 | 2700 | 0.3303 | 0.9429 |
88
+ | 0.0004 | 36.02 | 2775 | 0.1737 | 0.9429 |
89
+ | 0.0004 | 37.02 | 2850 | 0.1534 | 0.9714 |
90
+ | 0.0004 | 38.02 | 2925 | 0.1350 | 0.9714 |
91
+ | 0.0004 | 39.02 | 3000 | 0.1270 | 0.9714 |
92
+ | 0.0004 | 40.02 | 3075 | 0.1253 | 0.9714 |
93
+ | 0.0004 | 41.02 | 3150 | 0.1241 | 0.9714 |
94
+ | 0.0004 | 42.02 | 3225 | 0.1247 | 0.9714 |
95
+ | 0.0004 | 43.02 | 3300 | 0.1262 | 0.9714 |
96
+ | 0.0004 | 44.02 | 3375 | 0.1266 | 0.9571 |
97
+ | 0.0004 | 45.02 | 3450 | 0.1741 | 0.9714 |
98
+ | 0.0004 | 46.02 | 3525 | 0.1753 | 0.9714 |
99
+ | 0.0004 | 47.02 | 3600 | 0.1634 | 0.9714 |
100
+ | 0.0004 | 48.02 | 3675 | 0.1603 | 0.9714 |
101
+ | 0.0004 | 49.02 | 3750 | 0.1602 | 0.9714 |
102
 
103
 
104
  ### Framework versions