younggi commited on
Commit
961d9a9
·
1 Parent(s): 2fb1c57

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.4361
20
- - Accuracy: 0.8968
21
 
22
  ## Model description
23
 
@@ -37,27 +37,27 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
- - train_batch_size: 1
41
- - eval_batch_size: 1
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
- - training_steps: 1200
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 1.9142 | 0.25 | 300 | 1.9627 | 0.2714 |
53
- | 1.5385 | 1.25 | 600 | 1.0013 | 0.6857 |
54
- | 0.1054 | 2.25 | 900 | 0.9924 | 0.7143 |
55
- | 1.3117 | 3.25 | 1200 | 0.2302 | 0.9429 |
56
 
57
 
58
  ### Framework versions
59
 
60
  - Transformers 4.24.0
61
- - Pytorch 1.12.1+cu113
62
  - Datasets 2.7.1
63
  - Tokenizers 0.13.2
 
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.4287
20
+ - Accuracy: 0.8387
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 300
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 1.6613 | 0.25 | 75 | 1.3506 | 0.5286 |
53
+ | 0.4175 | 1.25 | 150 | 0.5572 | 0.7286 |
54
+ | 0.3592 | 2.25 | 225 | 0.2464 | 0.9286 |
55
+ | 0.1935 | 3.25 | 300 | 0.2603 | 0.9 |
56
 
57
 
58
  ### Framework versions
59
 
60
  - Transformers 4.24.0
61
+ - Pytorch 1.8.0+cu111
62
  - Datasets 2.7.1
63
  - Tokenizers 0.13.2