update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -49,56 +49,56 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
| 2.
|
53 |
-
| 1.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.0008 | 22.02 | 1725 | 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.0005 | 30.02 | 2325 | 0.
|
83 |
-
| 0.0005 | 31.02 | 2400 | 0.
|
84 |
-
| 0.0005 | 32.02 | 2475 | 0.
|
85 |
-
| 0.0005 | 33.02 | 2550 | 0.
|
86 |
-
| 0.0005 | 34.02 | 2625 | 0.
|
87 |
-
| 0.0005 | 35.02 | 2700 | 0.
|
88 |
-
| 0.0004 | 36.02 | 2775 | 0.
|
89 |
-
| 0.0004 | 37.02 | 2850 | 0.
|
90 |
-
| 0.
|
91 |
-
| 0.0004 | 39.02 | 3000 | 0.
|
92 |
-
| 0.0004 | 40.02 | 3075 | 0.
|
93 |
-
| 0.0004 | 41.02 | 3150 | 0.
|
94 |
-
| 0.0004 | 42.02 | 3225 | 0.
|
95 |
-
| 0.
|
96 |
-
| 0.0004 | 44.02 | 3375 | 0.
|
97 |
-
| 0.0004 | 45.02 | 3450 | 0.
|
98 |
-
| 0.0004 | 46.02 | 3525 | 0.
|
99 |
-
| 0.0004 | 47.02 | 3600 | 0.
|
100 |
-
| 0.0004 | 48.02 | 3675 | 0.
|
101 |
-
| 0.0004 | 49.02 | 3750 | 0.
|
102 |
|
103 |
|
104 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3841
|
20 |
+
- Accuracy: 0.8851
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 2.369 | 0.02 | 75 | 2.2216 | 0.2973 |
|
53 |
+
| 1.8283 | 1.02 | 150 | 1.7584 | 0.4865 |
|
54 |
+
| 0.8729 | 2.02 | 225 | 1.0192 | 0.7027 |
|
55 |
+
| 0.4077 | 3.02 | 300 | 0.4849 | 0.8378 |
|
56 |
+
| 0.3742 | 4.02 | 375 | 0.1344 | 0.9730 |
|
57 |
+
| 0.094 | 5.02 | 450 | 0.2449 | 0.8919 |
|
58 |
+
| 0.1005 | 6.02 | 525 | 1.0794 | 0.7838 |
|
59 |
+
| 0.0053 | 7.02 | 600 | 0.2364 | 0.9459 |
|
60 |
+
| 0.0807 | 8.02 | 675 | 0.6659 | 0.8378 |
|
61 |
+
| 0.0031 | 9.02 | 750 | 0.4496 | 0.9189 |
|
62 |
+
| 0.0203 | 10.02 | 825 | 0.3399 | 0.9189 |
|
63 |
+
| 0.0093 | 11.02 | 900 | 0.3725 | 0.9459 |
|
64 |
+
| 0.0022 | 12.02 | 975 | 0.5498 | 0.9189 |
|
65 |
+
| 0.0017 | 13.02 | 1050 | 0.1698 | 0.9730 |
|
66 |
+
| 0.0014 | 14.02 | 1125 | 0.1923 | 0.9459 |
|
67 |
+
| 0.0014 | 15.02 | 1200 | 0.1571 | 0.9730 |
|
68 |
+
| 0.0474 | 16.02 | 1275 | 0.5193 | 0.8919 |
|
69 |
+
| 0.0011 | 17.02 | 1350 | 0.1408 | 0.9730 |
|
70 |
+
| 0.001 | 18.02 | 1425 | 0.3406 | 0.9459 |
|
71 |
+
| 0.0034 | 19.02 | 1500 | 0.2516 | 0.9459 |
|
72 |
+
| 0.0029 | 20.02 | 1575 | 0.2962 | 0.9189 |
|
73 |
+
| 0.0008 | 21.02 | 1650 | 0.4024 | 0.9189 |
|
74 |
+
| 0.0008 | 22.02 | 1725 | 0.4644 | 0.9189 |
|
75 |
+
| 0.1521 | 23.02 | 1800 | 0.4825 | 0.9189 |
|
76 |
+
| 0.001 | 24.02 | 1875 | 0.6340 | 0.9189 |
|
77 |
+
| 0.0245 | 25.02 | 1950 | 0.3779 | 0.9459 |
|
78 |
+
| 0.0007 | 26.02 | 2025 | 0.3376 | 0.9459 |
|
79 |
+
| 0.0011 | 27.02 | 2100 | 0.2833 | 0.9459 |
|
80 |
+
| 0.0008 | 28.02 | 2175 | 0.1593 | 0.9730 |
|
81 |
+
| 0.0008 | 29.02 | 2250 | 0.0856 | 0.9730 |
|
82 |
+
| 0.0005 | 30.02 | 2325 | 0.1049 | 0.9730 |
|
83 |
+
| 0.0005 | 31.02 | 2400 | 0.1132 | 0.9730 |
|
84 |
+
| 0.0005 | 32.02 | 2475 | 0.1164 | 0.9730 |
|
85 |
+
| 0.0005 | 33.02 | 2550 | 0.1243 | 0.9730 |
|
86 |
+
| 0.0005 | 34.02 | 2625 | 0.1306 | 0.9730 |
|
87 |
+
| 0.0005 | 35.02 | 2700 | 0.3919 | 0.9459 |
|
88 |
+
| 0.0004 | 36.02 | 2775 | 0.3630 | 0.9459 |
|
89 |
+
| 0.0004 | 37.02 | 2850 | 0.2762 | 0.9459 |
|
90 |
+
| 0.0005 | 38.02 | 2925 | 0.2368 | 0.9459 |
|
91 |
+
| 0.0004 | 39.02 | 3000 | 0.1935 | 0.9730 |
|
92 |
+
| 0.0004 | 40.02 | 3075 | 0.1931 | 0.9730 |
|
93 |
+
| 0.0004 | 41.02 | 3150 | 0.2139 | 0.9459 |
|
94 |
+
| 0.0004 | 42.02 | 3225 | 0.1900 | 0.9730 |
|
95 |
+
| 0.0006 | 43.02 | 3300 | 0.1751 | 0.9730 |
|
96 |
+
| 0.0004 | 44.02 | 3375 | 0.2978 | 0.9459 |
|
97 |
+
| 0.0004 | 45.02 | 3450 | 0.2777 | 0.9459 |
|
98 |
+
| 0.0004 | 46.02 | 3525 | 0.2706 | 0.9459 |
|
99 |
+
| 0.0004 | 47.02 | 3600 | 0.2638 | 0.9459 |
|
100 |
+
| 0.0004 | 48.02 | 3675 | 0.2123 | 0.9459 |
|
101 |
+
| 0.0004 | 49.02 | 3750 | 0.2106 | 0.9459 |
|
102 |
|
103 |
|
104 |
### Framework versions
|