yovchev commited on
Commit
c527b27
·
1 Parent(s): 4757104

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1690.05 +/- 79.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ff7a835daf0297d5b28dad38fc7cf27886d80adfacc88c8f1e8517a2061d6b9
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07ccf94310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07ccf943a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07ccf94430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07ccf944c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f07ccf94550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f07ccf945e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f07ccf94670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07ccf94700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f07ccf94790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07ccf94820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07ccf948b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07ccf94940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f07ccf92dc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678367430982155726,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHWOK79R0m4+P24bPx2FeD8374e+lQQgP2u3tD6cuFS+d9O3vycIID2vwAS/F3ltPxhLDb92ShVALMBrPmKAOz+Wjzc/zfQhQKxUFD9v7Ce/v+Iuv+zAkT8P4N485wOGP3r5qL9ZdLU+qbf+Pq1qiz9NJ/I+enzJvmgZiD7rxDK/YjcrwBKV9L+zQC8/AqGUvkAccj+3sGW/UH6lP0G18b0KXK+/RFElP2pKDb9PKn2/Be2Zv6oUtD4v/ho/6J+dPnCWLL+Ktn+/JqNqv0nlGkA37EE/0ZU0wKm3/j5QCWu/zPMUP9YWUD448hg/vShYP+Eop78Zq5c/sW1Uv4P/T78PqEu9xLjUPgJKgT9aI989aqNjv6LP678t0T0//hmTPBc6pb4qZMW/htVsviKXLD/MGJ+/JrifPHGZAT966am/N+xBP1l0tT6pt/4+UAlrvzGxAD9+KZ69UKrzPpZhYT8XEPu/TxMcP3XYib+eaVC/L0uCvpLeXj9MAm0/EesKPuibt7/XAKw7ALU9PzpqgDzHWJ6/sL1Lv3p1yj5HgaM/l9qLv/PanT1Gecg+fhDYvzfsQT9ZdLU+qbf+PlAJa7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtCBY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWkuyPQAAAACorue/AAAAAOstnD0AAAAAjTz0PwAAAABTFP89AAAAAE8m3j8AAAAAxUBwPAAAAAAlhN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT5OeNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJpijr0AAAAA8fPtvwAAAAAVFaU9AAAAAIs9/z8AAAAA0FIIvQAAAAApM/I/AAAAADOzr70AAAAAWCrbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAbbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5sPC8AAAAAIpe+78AAAAAd10+vQAAAAB5QOE/AAAAAOrekr0AAAAAbOvlPwAAAACmin49AAAAALXu6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEpjW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhDacvAAAAACDk+S/AAAAAJOGmz0AAAAAfezjPwAAAAAp/2m9AAAAANMt2j8AAAAApHIzPQAAAADEweC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFrsmG/N7mMAWyUTegDjAF0lEdAqlGnWBjFynV9lChoBkdAmUZiA6Mir2gHTegDaAhHQKpVF/I8yN51fZQoaAZHQJWEpvaURnRoB03oA2gIR0CqW9B+F10UdX2UKGgGR0CTJRHzpX6qaAdN6ANoCEdAqlvhX6qKg3V9lChoBkdAluYnEyckMWgHTegDaAhHQKphoTxoZht1fZQoaAZHQJe4FUDMeOpoB03oA2gIR0CqZBKoZQ54dX2UKGgGR0Ca2UwWWQfZaAdN6ANoCEdAqmhmXkYGdXV9lChoBkdAm5C45ksjFGgHTegDaAhHQKpocXj2i+N1fZQoaAZHQJ4RM8s+V1RoB03oA2gIR0CqbgFar3j/dX2UKGgGR0CdAOcOskpraAdN6ANoCEdAqnCA7q6e5HV9lChoBkdAm6Gm2sq8UWgHTegDaAhHQKp283aSLZV1fZQoaAZHQJbfctEofCBoB03oA2gIR0CqdwSy+pOvdX2UKGgGR0CY3Fmp2ll9aAdN6ANoCEdAqn3u8Zk08HV9lChoBkdAmLxjt1IRRWgHTegDaAhHQKqAUJk5IYp1fZQoaAZHQJVMdrLyMDRoB03oA2gIR0CqhMfgrH2idX2UKGgGR0CU2gqptJnQaAdN6ANoCEdAqoTShvitJXV9lChoBkdAhhXPN/vv0GgHTegDaAhHQKqKcrf+CK91fZQoaAZHQIMUgWYWtU5oB03oA2gIR0CqjQq1og3cdX2UKGgGR0Bvcf8yeqaPaAdN6ANoCEdAqpKlOwgTy3V9lChoBkdAbeMFtbcGkmgHTegDaAhHQKqStOQhfSh1fZQoaAZHQJVUZiuuA7RoB03oA2gIR0Cqmr0XgtOEdX2UKGgGR0CQhGO938oAaAdN6ANoCEdAqp0+hIvrW3V9lChoBkdAlmbW3WnTAmgHTegDaAhHQKqhkzbeuV51fZQoaAZHQJhRpAfMfRxoB03oA2gIR0CqoZ4fwI+odX2UKGgGR0CX2DMAFPi2aAdN6ANoCEdAqqb7PjXFtXV9lChoBkdAl4Ull9SdfGgHTegDaAhHQKqpSgi/wiJ1fZQoaAZHQJlCEjyFwkxoB03oA2gIR0CqraBPj4pMdX2UKGgGR0CZPWncclw+aAdN6ANoCEdAqq2rM3ZPEnV9lChoBkdAl51WpVCHAWgHTegDaAhHQKq1/uogmqp1fZQoaAZHQJgyCE/SpitoB03oA2gIR0CquTnTqjagdX2UKGgGR0CZCZg6ltTDaAdN6ANoCEdAqr2iDsdDIHV9lChoBkdAmUy0Z75VO2gHTegDaAhHQKq9rYQJ5Vx1fZQoaAZHQJlgEjNY8uBoB03oA2gIR0CqwzOiN83NdX2UKGgGR0CXOQhXbM5faAdN6ANoCEdAqsWO+ZgG8nV9lChoBkdAmHqOktVaOmgHTegDaAhHQKrJ3ifg75p1fZQoaAZHQJPZqJKraM9oB03oA2gIR0Cqyej7qIJrdX2UKGgGR0CaCS4593KTaAdN6ANoCEdAqtDsSmIj4nV9lChoBkdAlPCF5GBnSWgHTegDaAhHQKrUoclPact1fZQoaAZHQJLTeEzwc5toB03oA2gIR0Cq2eKmbb1zdX2UKGgGR0CHtrzshPj5aAdN6ANoCEdAqtntdRiw0XV9lChoBkdAk/Ocajvd/WgHTegDaAhHQKrfbkmx+rl1fZQoaAZHQJYhltqHoHNoB03oA2gIR0Cq4c+XiR4hdX2UKGgGR0CXf5aiKziTaAdN6ANoCEdAquY/OY6XB3V9lChoBkdAlR74FmnO0WgHTegDaAhHQKrmSrRSgoR1fZQoaAZHQJRoasbNr0toB03oA2gIR0Cq7Abg0j1PdX2UKGgGR0CWs7bWEsasaAdN6ANoCEdAqu9d6AvtdHV9lChoBkdAmdza5CngpGgHTegDaAhHQKr17vxYq5N1fZQoaAZHQJe3s1tO2y9oB03oA2gIR0Cq9fmjbi6ydX2UKGgGR0CYqIF3pwCKaAdN6ANoCEdAqvtvHktEonV9lChoBkdAms+wA2hqTWgHTegDaAhHQKr93V+Zw4t1fZQoaAZHQJO8FDa4+bFoB03oA2gIR0CrAj7UgB91dX2UKGgGR0Cbbmqaw2VFaAdN6ANoCEdAqwJJ4wAU+XV9lChoBkdAmeClwgkkbGgHTegDaAhHQKsHxEOy3Td1fZQoaAZHQJeTltYSxqxoB03oA2gIR0CrClun2qT9dX2UKGgGR0CZ1uwaBI4EaAdN6ANoCEdAqxD64z7/GXV9lChoBkdAlsgweNkvsmgHTegDaAhHQKsRC9FnZkF1fZQoaAZHQJwX1D0Dlo1oB03oA2gIR0CrF9ufukULdX2UKGgGR0CUKUDBuXNUaAdN6ANoCEdAqxpA5NoJzHV9lChoBkdAlW9XjIaLoGgHTegDaAhHQKsepJAdGRV1fZQoaAZHQIoYVjwx33ZoB03oA2gIR0CrHq9wvQF+dX2UKGgGR0CbViXNke6qaAdN6ANoCEdAqyQ6EL6UJXV9lChoBkdAnNPvFefI0mgHTegDaAhHQKsmohufmLd1fZQoaAZHQJnk0Rg7YChoB03oA2gIR0CrLAwd0aIfdX2UKGgGR0Cb4VcRlHz6aAdN6ANoCEdAqywcz0pVj3V9lChoBkdAmJ1DisGPgmgHTegDaAhHQKs0CBo24ut1fZQoaAZHQJuGPNLUTctoB03oA2gIR0CrNnO5avA5dX2UKGgGR0CWa139JjDsaAdN6ANoCEdAqzrYyTINmXV9lChoBkdAla3WJ79hqmgHTegDaAhHQKs64/cnE2p1fZQoaAZHQJoMLeXRgJFoB03oA2gIR0CrQHfPw/gSdX2UKGgGR0CZXp2exwAEaAdN6ANoCEdAq0Lo93bEgnV9lChoBkdAmSwwJ5VwP2gHTegDaAhHQKtHYWnCO3l1fZQoaAZHQJpFdaUzKtBoB03oA2gIR0CrR3A3DNyHdX2UKGgGR0CaB3k92X9jaAdN6ANoCEdAq0/BXhfjTHV9lChoBkdAmKS0ep4r0GgHTegDaAhHQKtS5WH1vl51fZQoaAZHQJCGyqm0mdBoB03oA2gIR0CrV1Za/yoXdX2UKGgGR0CU5HL5ylvZaAdN6ANoCEdAq1dheqrBCXV9lChoBkdAlWXPqPfbbmgHTegDaAhHQKtc6VX3g1p1fZQoaAZHQJZ67Ijnmq5oB03oA2gIR0CrX0O/+Kj0dX2UKGgGR0CV53ZZ0SyuaAdN6ANoCEdAq2Oz+YMOPXV9lChoBkdAlyG+jua4MGgHTegDaAhHQKtjwG1QZXN1fZQoaAZHQJJ9QRL9MsZoB03oA2gIR0CratnVPN3XdX2UKGgGR0CVK5zcAR02aAdN6ANoCEdAq26LXL/0d3V9lChoBkdAlF70IgNgB2gHTegDaAhHQKtzkwGnn+11fZQoaAZHQJQyLcpLEk1oB03oA2gIR0Crc6BQFcIJdX2UKGgGR0CWdEWpIczZaAdN6ANoCEdAq3kUlb/wRXV9lChoBkdAlor8Aq/dqWgHTegDaAhHQKt7a5CngpB1fZQoaAZHQJetmlEZzgdoB03oA2gIR0Crf9Sbx3FDdX2UKGgGR0CZHkjMFEApaAdN6ANoCEdAq3/f13+uNnV9lChoBkdAlYb22oegc2gHTegDaAhHQKuGBDLKV6h1fZQoaAZHQJWR3E61b7loB03oA2gIR0CriYWhZha1dX2UKGgGR0CRTg6wt8NQaAdN6ANoCEdAq4/YL5RCQnV9lChoBkdAkRH5Q1rIo2gHTegDaAhHQKuP4xh2GIt1fZQoaAZHQJKs0/JNj9ZoB03oA2gIR0CrlUT238XOdX2UKGgGR0CXhuGL1mJ4aAdN6ANoCEdAq5emPYFqz3V9lChoBkdAl78yWu5jIGgHTegDaAhHQKub7EsJ6Y51fZQoaAZHQJfg0NlRP45oB03oA2gIR0Crm/iLuQZGdX2UKGgGR0CY45cqe9SNaAdN6ANoCEdAq6FqqKgqVnV9lChoBkdAmwf1/2Cd0GgHTegDaAhHQKukE/fO2Rd1fZQoaAZHQJYIpnjABT5oB03oA2gIR0CrqqJb2USqdX2UKGgGR0CZzxoSL61taAdN6ANoCEdAq6qzwBo243VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f03e020bf4354120c323c74bd6d4199a00fa179d77196f8f7e6957b326bcf9
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e858f8936cfc9a0e61697d53714deaafa6e0aa9d000845345cac84921899dd
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07ccf94310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07ccf943a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07ccf94430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07ccf944c0>", "_build": "<function ActorCriticPolicy._build at 0x7f07ccf94550>", "forward": "<function ActorCriticPolicy.forward at 0x7f07ccf945e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f07ccf94670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07ccf94700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07ccf94790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07ccf94820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07ccf948b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07ccf94940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f07ccf92dc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678367430982155726, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHWOK79R0m4+P24bPx2FeD8374e+lQQgP2u3tD6cuFS+d9O3vycIID2vwAS/F3ltPxhLDb92ShVALMBrPmKAOz+Wjzc/zfQhQKxUFD9v7Ce/v+Iuv+zAkT8P4N485wOGP3r5qL9ZdLU+qbf+Pq1qiz9NJ/I+enzJvmgZiD7rxDK/YjcrwBKV9L+zQC8/AqGUvkAccj+3sGW/UH6lP0G18b0KXK+/RFElP2pKDb9PKn2/Be2Zv6oUtD4v/ho/6J+dPnCWLL+Ktn+/JqNqv0nlGkA37EE/0ZU0wKm3/j5QCWu/zPMUP9YWUD448hg/vShYP+Eop78Zq5c/sW1Uv4P/T78PqEu9xLjUPgJKgT9aI989aqNjv6LP678t0T0//hmTPBc6pb4qZMW/htVsviKXLD/MGJ+/JrifPHGZAT966am/N+xBP1l0tT6pt/4+UAlrvzGxAD9+KZ69UKrzPpZhYT8XEPu/TxMcP3XYib+eaVC/L0uCvpLeXj9MAm0/EesKPuibt7/XAKw7ALU9PzpqgDzHWJ6/sL1Lv3p1yj5HgaM/l9qLv/PanT1Gecg+fhDYvzfsQT9ZdLU+qbf+PlAJa7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtCBY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWkuyPQAAAACorue/AAAAAOstnD0AAAAAjTz0PwAAAABTFP89AAAAAE8m3j8AAAAAxUBwPAAAAAAlhN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT5OeNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJpijr0AAAAA8fPtvwAAAAAVFaU9AAAAAIs9/z8AAAAA0FIIvQAAAAApM/I/AAAAADOzr70AAAAAWCrbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAbbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5sPC8AAAAAIpe+78AAAAAd10+vQAAAAB5QOE/AAAAAOrekr0AAAAAbOvlPwAAAACmin49AAAAALXu6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEpjW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhDacvAAAAACDk+S/AAAAAJOGmz0AAAAAfezjPwAAAAAp/2m9AAAAANMt2j8AAAAApHIzPQAAAADEweC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFrsmG/N7mMAWyUTegDjAF0lEdAqlGnWBjFynV9lChoBkdAmUZiA6Mir2gHTegDaAhHQKpVF/I8yN51fZQoaAZHQJWEpvaURnRoB03oA2gIR0CqW9B+F10UdX2UKGgGR0CTJRHzpX6qaAdN6ANoCEdAqlvhX6qKg3V9lChoBkdAluYnEyckMWgHTegDaAhHQKphoTxoZht1fZQoaAZHQJe4FUDMeOpoB03oA2gIR0CqZBKoZQ54dX2UKGgGR0Ca2UwWWQfZaAdN6ANoCEdAqmhmXkYGdXV9lChoBkdAm5C45ksjFGgHTegDaAhHQKpocXj2i+N1fZQoaAZHQJ4RM8s+V1RoB03oA2gIR0CqbgFar3j/dX2UKGgGR0CdAOcOskpraAdN6ANoCEdAqnCA7q6e5HV9lChoBkdAm6Gm2sq8UWgHTegDaAhHQKp283aSLZV1fZQoaAZHQJbfctEofCBoB03oA2gIR0CqdwSy+pOvdX2UKGgGR0CY3Fmp2ll9aAdN6ANoCEdAqn3u8Zk08HV9lChoBkdAmLxjt1IRRWgHTegDaAhHQKqAUJk5IYp1fZQoaAZHQJVMdrLyMDRoB03oA2gIR0CqhMfgrH2idX2UKGgGR0CU2gqptJnQaAdN6ANoCEdAqoTShvitJXV9lChoBkdAhhXPN/vv0GgHTegDaAhHQKqKcrf+CK91fZQoaAZHQIMUgWYWtU5oB03oA2gIR0CqjQq1og3cdX2UKGgGR0Bvcf8yeqaPaAdN6ANoCEdAqpKlOwgTy3V9lChoBkdAbeMFtbcGkmgHTegDaAhHQKqStOQhfSh1fZQoaAZHQJVUZiuuA7RoB03oA2gIR0Cqmr0XgtOEdX2UKGgGR0CQhGO938oAaAdN6ANoCEdAqp0+hIvrW3V9lChoBkdAlmbW3WnTAmgHTegDaAhHQKqhkzbeuV51fZQoaAZHQJhRpAfMfRxoB03oA2gIR0CqoZ4fwI+odX2UKGgGR0CX2DMAFPi2aAdN6ANoCEdAqqb7PjXFtXV9lChoBkdAl4Ull9SdfGgHTegDaAhHQKqpSgi/wiJ1fZQoaAZHQJlCEjyFwkxoB03oA2gIR0CqraBPj4pMdX2UKGgGR0CZPWncclw+aAdN6ANoCEdAqq2rM3ZPEnV9lChoBkdAl51WpVCHAWgHTegDaAhHQKq1/uogmqp1fZQoaAZHQJgyCE/SpitoB03oA2gIR0CquTnTqjagdX2UKGgGR0CZCZg6ltTDaAdN6ANoCEdAqr2iDsdDIHV9lChoBkdAmUy0Z75VO2gHTegDaAhHQKq9rYQJ5Vx1fZQoaAZHQJlgEjNY8uBoB03oA2gIR0CqwzOiN83NdX2UKGgGR0CXOQhXbM5faAdN6ANoCEdAqsWO+ZgG8nV9lChoBkdAmHqOktVaOmgHTegDaAhHQKrJ3ifg75p1fZQoaAZHQJPZqJKraM9oB03oA2gIR0Cqyej7qIJrdX2UKGgGR0CaCS4593KTaAdN6ANoCEdAqtDsSmIj4nV9lChoBkdAlPCF5GBnSWgHTegDaAhHQKrUoclPact1fZQoaAZHQJLTeEzwc5toB03oA2gIR0Cq2eKmbb1zdX2UKGgGR0CHtrzshPj5aAdN6ANoCEdAqtntdRiw0XV9lChoBkdAk/Ocajvd/WgHTegDaAhHQKrfbkmx+rl1fZQoaAZHQJYhltqHoHNoB03oA2gIR0Cq4c+XiR4hdX2UKGgGR0CXf5aiKziTaAdN6ANoCEdAquY/OY6XB3V9lChoBkdAlR74FmnO0WgHTegDaAhHQKrmSrRSgoR1fZQoaAZHQJRoasbNr0toB03oA2gIR0Cq7Abg0j1PdX2UKGgGR0CWs7bWEsasaAdN6ANoCEdAqu9d6AvtdHV9lChoBkdAmdza5CngpGgHTegDaAhHQKr17vxYq5N1fZQoaAZHQJe3s1tO2y9oB03oA2gIR0Cq9fmjbi6ydX2UKGgGR0CYqIF3pwCKaAdN6ANoCEdAqvtvHktEonV9lChoBkdAms+wA2hqTWgHTegDaAhHQKr93V+Zw4t1fZQoaAZHQJO8FDa4+bFoB03oA2gIR0CrAj7UgB91dX2UKGgGR0Cbbmqaw2VFaAdN6ANoCEdAqwJJ4wAU+XV9lChoBkdAmeClwgkkbGgHTegDaAhHQKsHxEOy3Td1fZQoaAZHQJeTltYSxqxoB03oA2gIR0CrClun2qT9dX2UKGgGR0CZ1uwaBI4EaAdN6ANoCEdAqxD64z7/GXV9lChoBkdAlsgweNkvsmgHTegDaAhHQKsRC9FnZkF1fZQoaAZHQJwX1D0Dlo1oB03oA2gIR0CrF9ufukULdX2UKGgGR0CUKUDBuXNUaAdN6ANoCEdAqxpA5NoJzHV9lChoBkdAlW9XjIaLoGgHTegDaAhHQKsepJAdGRV1fZQoaAZHQIoYVjwx33ZoB03oA2gIR0CrHq9wvQF+dX2UKGgGR0CbViXNke6qaAdN6ANoCEdAqyQ6EL6UJXV9lChoBkdAnNPvFefI0mgHTegDaAhHQKsmohufmLd1fZQoaAZHQJnk0Rg7YChoB03oA2gIR0CrLAwd0aIfdX2UKGgGR0Cb4VcRlHz6aAdN6ANoCEdAqywcz0pVj3V9lChoBkdAmJ1DisGPgmgHTegDaAhHQKs0CBo24ut1fZQoaAZHQJuGPNLUTctoB03oA2gIR0CrNnO5avA5dX2UKGgGR0CWa139JjDsaAdN6ANoCEdAqzrYyTINmXV9lChoBkdAla3WJ79hqmgHTegDaAhHQKs64/cnE2p1fZQoaAZHQJoMLeXRgJFoB03oA2gIR0CrQHfPw/gSdX2UKGgGR0CZXp2exwAEaAdN6ANoCEdAq0Lo93bEgnV9lChoBkdAmSwwJ5VwP2gHTegDaAhHQKtHYWnCO3l1fZQoaAZHQJpFdaUzKtBoB03oA2gIR0CrR3A3DNyHdX2UKGgGR0CaB3k92X9jaAdN6ANoCEdAq0/BXhfjTHV9lChoBkdAmKS0ep4r0GgHTegDaAhHQKtS5WH1vl51fZQoaAZHQJCGyqm0mdBoB03oA2gIR0CrV1Za/yoXdX2UKGgGR0CU5HL5ylvZaAdN6ANoCEdAq1dheqrBCXV9lChoBkdAlWXPqPfbbmgHTegDaAhHQKtc6VX3g1p1fZQoaAZHQJZ67Ijnmq5oB03oA2gIR0CrX0O/+Kj0dX2UKGgGR0CV53ZZ0SyuaAdN6ANoCEdAq2Oz+YMOPXV9lChoBkdAlyG+jua4MGgHTegDaAhHQKtjwG1QZXN1fZQoaAZHQJJ9QRL9MsZoB03oA2gIR0CratnVPN3XdX2UKGgGR0CVK5zcAR02aAdN6ANoCEdAq26LXL/0d3V9lChoBkdAlF70IgNgB2gHTegDaAhHQKtzkwGnn+11fZQoaAZHQJQyLcpLEk1oB03oA2gIR0Crc6BQFcIJdX2UKGgGR0CWdEWpIczZaAdN6ANoCEdAq3kUlb/wRXV9lChoBkdAlor8Aq/dqWgHTegDaAhHQKt7a5CngpB1fZQoaAZHQJetmlEZzgdoB03oA2gIR0Crf9Sbx3FDdX2UKGgGR0CZHkjMFEApaAdN6ANoCEdAq3/f13+uNnV9lChoBkdAlYb22oegc2gHTegDaAhHQKuGBDLKV6h1fZQoaAZHQJWR3E61b7loB03oA2gIR0CriYWhZha1dX2UKGgGR0CRTg6wt8NQaAdN6ANoCEdAq4/YL5RCQnV9lChoBkdAkRH5Q1rIo2gHTegDaAhHQKuP4xh2GIt1fZQoaAZHQJKs0/JNj9ZoB03oA2gIR0CrlUT238XOdX2UKGgGR0CXhuGL1mJ4aAdN6ANoCEdAq5emPYFqz3V9lChoBkdAl78yWu5jIGgHTegDaAhHQKub7EsJ6Y51fZQoaAZHQJfg0NlRP45oB03oA2gIR0Crm/iLuQZGdX2UKGgGR0CY45cqe9SNaAdN6ANoCEdAq6FqqKgqVnV9lChoBkdAmwf1/2Cd0GgHTegDaAhHQKukE/fO2Rd1fZQoaAZHQJYIpnjABT5oB03oA2gIR0CrqqJb2USqdX2UKGgGR0CZzxoSL61taAdN6ANoCEdAq6qzwBo243VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5559a01fe9e08fc7c7f1fe5656d0d6cf865e560e6f18a88c060412fa7bdd4601
3
+ size 1191701
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1690.052562039427, "std_reward": 79.9264637475352, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T14:12:15.185114"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86cb77a7d1b05c6e5776fb650fb1ed76c1274bff23115660e3b5b4c6305a1624
3
+ size 2136