File size: 2,511 Bytes
b3f4ed7
 
 
 
27166aa
 
 
 
 
 
 
 
 
 
 
 
330f9e7
 
 
 
 
 
 
cd7ba99
 
 
f6abe6d
cd7ba99
f6abe6d
cd7ba99
 
 
 
82bd166
f6abe6d
 
 
 
 
 
 
 
 
82bd166
3907677
 
82bd166
 
 
 
315b9b8
82bd166
 
315b9b8
82bd166
315b9b8
82bd166
 
 
 
315b9b8
82bd166
315b9b8
 
82bd166
 
315b9b8
 
82bd166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: mit
datasets:
- Xmaster6y/stockfish-debug
name: Xmaster6y/gpt2-stockfish-debug
results:
  - task: train
    metrics:
    - name: train-loss
      type: loss
      value: 0.151
      verified: false
    - name: eval-loss
      type: loss
      value: 0.138
      verified: false
widget:
- text: "FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1\nMOVE:"
  example_title: "Init board"
- text: "FEN: r2qr1k1/1p3ppp/2n1bb2/p2p4/P2N4/1B1P2B1/1PP2PPP/R2QR1K1 b - - 0 16\nMOVE:"
  example_title: "Board with legal completion"
- text: "FEN: 6k1/1p3ppp/2b2b2/p2p4/P2Q4/1B1P2B1/1PP2PPP/4q1K1 w - - 2 24\nMOVE:"
  example_title: "Board with illegal completion"
---
# Model Card for gpt2-stockfish-debug

## Training Details

The model was trained during 1 epoch on the `Xmaster6y/stockfish-debug` dataset (no hyperparameter tuning done). The samples are:

```json
{"prompt":"FEN: {fen}\nMOVE:", "completion": " {move}"}
```

Two possible simple extensions:

- Expand the FEN string: `r2qk3/...` -> `r11qk111/...` or equivalent
- Condition with the result (ELO not available in the dataset):
```json
{"prompt":"RES: {res}\nFEN: {fen}\nMOVE:", "completion": " {move}"}
```

## Use the Model

The following code requires `python-chess` (in addition to `transformers`) which you can install using `pip install python-chess`.

```python
import chess
from transformers import AutoModelForCausalLM, AutoTokenizer


def next_move(model, tokenizer, fen):
    input_ids = tokenizer(f"FEN: {fen}\nMOVE:", return_tensors="pt")
    input_ids = {k: v.to(model.device) for k, v in input_ids.items()}
    out = model.generate(
        **input_ids,
        max_new_tokens=10,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        temperature=0.1,
    )
    out_str = tokenizer.batch_decode(out)[0]
    return out_str.split("MOVE:")[-1].replace("<|endoftext|>", "").strip()


board = chess.Board()
model = AutoModelForCausalLM.from_pretrained("Xmaster6y/gpt2-stockfish-debug")
tokenizer = AutoTokenizer.from_pretrained("Xmaster6y/gpt2-stockfish-debug")  # or "gpt2"
tokenizer.pad_token = tokenizer.eos_token
for i in range(100):
    fen = board.fen()
    move_uci = next_move(model, tokenizer, fen)
    try:
        print(move_uci)
        move = chess.Move.from_uci(move_uci)
        if move not in board.legal_moves:
            raise chess.IllegalMoveError
        board.push(move)
    except chess.IllegalMoveError:
        print(board)
        print("Illegal move", i)
        break
```