File size: 2,808 Bytes
b3f4ed7 27166aa 330f9e7 3cfaba5 cd7ba99 c187fbe f6abe6d cd7ba99 329e823 cd7ba99 82bd166 f6abe6d 82bd166 3907677 82bd166 315b9b8 82bd166 315b9b8 82bd166 315b9b8 82bd166 315b9b8 82bd166 315b9b8 82bd166 315b9b8 82bd166 3cfaba5 82bd166 3cfaba5 82bd166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: mit
datasets:
- Xmaster6y/stockfish-debug
name: Xmaster6y/gpt2-stockfish-debug
results:
- task: train
metrics:
- name: train-loss
type: loss
value: 0.151
verified: false
- name: eval-loss
type: loss
value: 0.138
verified: false
widget:
- text: "FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1\nMOVE:"
example_title: "Init Board"
- text: "FEN: r2q1rk1/1p3ppp/4bb2/p2p4/5B2/1P1P4/1PPQ1PPP/R3R1K1 w - - 1 17\nMOVE:"
example_title: "Middle Board"
- text: "FEN: 4r1k1/1p1b1ppp/8/8/3P4/2P5/1q3PPP/6K1 b - - 0 28\nMOVE:"
example_title: "Checkmate Possible"
---
# Model Card for gpt2-stockfish-debug
See my [blog post](https://yp-edu.github.io/projects/training-gpt2-on-stockfish-games) for additional details.
## Training Details
The model was trained during 1 epoch on the [Xmaster6y/stockfish-debug](https://huggingface.co/datasets/Xmaster6y/stockfish-debug) dataset (no hyperparameter tuning done). The samples are:
```json
{"prompt":"FEN: {fen}\nMOVE:", "completion": " {move}"}
```
Two possible simple extensions:
- Expand the FEN string: `r2qk3/...` -> `r11qk111/...` or equivalent
- Condition with the result (ELO not available in the dataset):
```json
{"prompt":"RES: {res}\nFEN: {fen}\nMOVE:", "completion": " {move}"}
```
## Use the Model
The following code requires `python-chess` (in addition to `transformers`) which you can install using `pip install python-chess`.
```python
import chess
from transformers import AutoModelForCausalLM, AutoTokenizer
def next_move(model, tokenizer, fen):
input_ids = tokenizer(f"FEN: {fen}\nMOVE:", return_tensors="pt")
input_ids = {k: v.to(model.device) for k, v in input_ids.items()}
out = model.generate(
**input_ids,
max_new_tokens=10,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.1,
)
out_str = tokenizer.batch_decode(out)[0]
return out_str.split("MOVE:")[-1].replace("<|endoftext|>", "").strip()
board = chess.Board()
model = AutoModelForCausalLM.from_pretrained("Xmaster6y/gpt2-stockfish-debug")
tokenizer = AutoTokenizer.from_pretrained("Xmaster6y/gpt2-stockfish-debug") # or "gpt2"
tokenizer.pad_token = tokenizer.eos_token
for i in range(100):
fen = board.fen()
move_uci = next_move(model, tokenizer, fen)
try:
print(move_uci)
move = chess.Move.from_uci(move_uci)
if move not in board.legal_moves:
raise chess.IllegalMoveError
board.push(move)
outcome = board.outcome()
if outcome is not None:
print(board)
print(outcome.result())
break
except chess.IllegalMoveError:
print(board)
print("Illegal move", i)
break
else:
print(board)
```
|