--- license: mit datasets: - Xmaster6y/stockfish-debug name: Xmaster6y/gpt2-stockfish-debug results: - task: train metrics: - name: train-loss type: loss value: 0.151 verified: false - name: eval-loss type: loss value: 0.138 verified: false --- # Model Card for gpt2-stockfish-debug ## Training Details The model was trained during 1 epoch on the `Xmaster6y/stockfish-debug` dataset (no hyperparameter tuning done). The samples are: ```json {"prompt":"FEN: {fen}\nMOVE:", "completion": " {move}"} ``` Two possible simple extensions: - Expand the FEN string: `r2qk3/...` -> `r11qk111/...` or equivalent - Condition with the result (ELO not available in the dataset): ```json {"prompt":"RES: {res}\nFEN: {fen}\nMOVE:", "completion": " {move}"} ``` ## Use the Model ```python import chess from transformers import AutoModelForCausalLM, AutoTokenizer def next_move(model, tokenizer, fen): input_ids = tokenizer(f"FEN: {fen}\nMOVE:", return_tensors="pt") input_ids = {k:v.to(model.device) for k,v in input_ids.items()} out = model.generate( **input_ids, max_new_tokens=10, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.1, ) out_str = tokenizer.batch_decode(out)[0] return out_str.split('MOVE:')[-1].replace("<|endoftext|>", "").strip() board = chess.Board() model = AutoModelForCausalLM.from_pretrained('Xmaster6y/gpt2-stockfish-debug') tokenizer = AutoTokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token for i in range(100): fen = board.fen() move_uci = next_move(model, tokenizer, fen) try: print(move_uci) move = chess.Move.from_uci(move_uci) if move not in board.legal_moves: raise chess.IllegalMoveError board.push(move) except chess.IllegalMoveError: print(board) print("Illegal move", i) break ```