Updated model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +38 -38
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 245.09 +/- 49.65
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e8e13856980>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e8e13856a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e8e13856ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e8e13856b60>", "_build": "<function ActorCriticPolicy._build at 0x7e8e13856c00>", "forward": "<function ActorCriticPolicy.forward at 0x7e8e13856ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e8e13856d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e8e13856de0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e8e13856e80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e8e13856f20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e8e13856fc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e8e13857060>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8e139c1b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 798720, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737482699378465084, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAABoAQT2G8pw/RGYdPmdKKb+DEio9MTsRPQAAAAAAAAAAIBs9vm6Rrbys9J44xON3ttmPGj4srrO3AACAPwAAgD8gVj++7NDXPD5tdj3XGQy8qEptvhgmHT0AAIA/AACAP7C4d74+K3E/G3L2vi2TFr8OdYi+Yb2RvQAAAAAAAAAApdSUvj4cmT0dWhc+ixdlvmsHLDxtqfS7AAAAAAAAAAAg84C+DMcpPkkUqj02RIq+Jq4dvaoAfz0AAAAAAAAAADONlD1PU309UerEvqLMKb4K/NG9kt7KvAAAAAAAAAAAWt2LPr1ECj+GaAC+ISYtv6/3tD5YL5q+AAAAAAAAAADWXWi+ZJUZvaNf8rwKeqS9tkSzPiLya74AAAAAAACAP5qvcj37xZo953yovoKJBL4BkcK99U2jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6006400000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+iW/BWPtGMAWyUS+GMAXSUR0CPjkfp2U0OdX2UKGgGR0BvWogxJul5aAdL0WgIR0CPjnq+rU9ZdX2UKGgGR0BwhBDWsijdaAdL1WgIR0CPjwH+qBEsdX2UKGgGR0BwWsGyHEdeaAdLzmgIR0CPj7vuPV/ddX2UKGgGR0Bzv+PZIxxlaAdL+GgIR0CPkKNqgyuZdX2UKGgGR0Bd1T1TR6WxaAdN6ANoCEdAj5IBGhEjPnV9lChoBkdAalqXY150KmgHTQYCaAhHQI+SmgFotcx1fZQoaAZHQG4YPAGjbi9oB0vvaAhHQI+UFBa9sad1fZQoaAZHQHBsNEkSmIloB0uraAhHQI+WDsfJV811fZQoaAZHQHFrOAqd6LRoB0vMaAhHQI+W/8IiTt91fZQoaAZHQHDEtKqXF99oB0vDaAhHQI+XmwLVnVZ1fZQoaAZHQHCoqODJ2dNoB0viaAhHQI+Xv8yeqaR1fZQoaAZHQHAiEmICU5doB0vGaAhHQI+YVqzqrzZ1fZQoaAZHQHDHY2fkFOhoB0vXaAhHQI+adyT6i0x1fZQoaAZHQHHJSFXaJyhoB0vpaAhHQI+asQ2/BWR1fZQoaAZHQG4uvDHfdh1oB0vMaAhHQI+bxCv5gw51fZQoaAZHQGM3k+gUUPBoB03oA2gIR0CPnM5imVJMdX2UKGgGR0BwgYmLLpzLaAdL1mgIR0CPniB4lhPTdX2UKGgGR0By3IzXSSeRaAdLx2gIR0CPnmrqdH2AdX2UKGgGR0Bywy0iQkonaAdLyWgIR0CPn7cpLEk0dX2UKGgGR0BzxSe8PFvRaAdNGAFoCEdAj6IJLM9r43V9lChoBkdAcfBuxKQJX2gHTSoBaAhHQI+ik5n13+x1fZQoaAZHQHBVLQ9ic5NoB0veaAhHQI+j96AvtdB1fZQoaAZHQHK/9jLB9CxoB0vvaAhHQI+lzQZ4wAV1fZQoaAZHQETC3PzFuNxoB0tjaAhHQI+mmkSElE91fZQoaAZHQHKYMenyd4FoB00/AWgIR0CPps0Jng5zdX2UKGgGR0ByyyZKFqSHaAdL22gIR0CPptn2ZiNLdX2UKGgGR0Byj7s+mm+CaAdL6WgIR0CPpxDUExIrdX2UKGgGR0ByqSwyIpH7aAdL4mgIR0CPqIDHwPRRdX2UKGgGR0Bya/eenQ6ZaAdL/GgIR0CPrEgzP8htdX2UKGgGR0BwIA45tFa0aAdL2GgIR0CPruxu89OidX2UKGgGR0BxHlB4Uvf1aAdL1mgIR0CPr/5Sm65HdX2UKGgGR0BwIA1UEPlNaAdL02gIR0CPsC7FKkEcdX2UKGgGR0Bvsbj/+85CaAdLx2gIR0CPsX9kSVW0dX2UKGgGR0BxF6R8twrEaAdL/mgIR0CPsbJ7LMcIdX2UKGgGR0Bf0ujua4MGaAdN6ANoCEdAj7QviT+vQnV9lChoBkdAb9UZBsyi22gHS71oCEdAkBMUsrd30XV9lChoBkdAb/w9M9KVZGgHS9NoCEdAkBUTy4FzMnV9lChoBkdAbSZx9XtBwGgHS79oCEdAkBU5w4sEq3V9lChoBkdAcXER7qptJmgHS8RoCEdAkBVCH6/IsHV9lChoBkdAciO3aSLZSWgHS7poCEdAkBW672+PBHV9lChoBkdAcPFR4hUzbmgHTQIBaAhHQJAXk6BAfMh1fZQoaAZHQHCBQJPZZjhoB0vEaAhHQJAX36zmfXh1fZQoaAZHQHKrmZZ0SytoB0v1aAhHQJAYkZBLPD51fZQoaAZHQHGrGv4dp7FoB0u5aAhHQJAZxuaWom51fZQoaAZHQG8SXBYV6/toB0vUaAhHQJAac163RXx1fZQoaAZHQHPjB0+1SfloB0voaAhHQJAazxlQMx51fZQoaAZHQGK957w8W9FoB03oA2gIR0CQG+JNTLntdX2UKGgGR0ByxCE4//vOaAdNAAFoCEdAkBwfBacI7nV9lChoBkdAQjhj+aScLGgHS7RoCEdAkBzzoMa0hXV9lChoBkdAb8K+QlruY2gHS+BoCEdAkB1MX3xnWnV9lChoBkdAckyuVopQUGgHTS0BaAhHQJAev2rXDm91fZQoaAZHQG6WREnb7CVoB0vgaAhHQJAf8xgy/K11fZQoaAZHQHNPeo1k1/FoB00JAWgIR0CQH/udf9gndX2UKGgGR0BxPFbzK9wnaAdLzGgIR0CQIMyGzru6dX2UKGgGR0Bb+Boh6jWTaAdN6ANoCEdAkCITwYtQK3V9lChoBkdAId9rO7g882gHS69oCEdAkCOcTviLl3V9lChoBkdAcWhzAeq7y2gHTQwBaAhHQJAj9ZU1hst1fZQoaAZHQF8txbSqlxhoB03oA2gIR0CQJCxTbWVedX2UKGgGR0BwWdl5GBnSaAdLy2gIR0CQJbnm7rcCdX2UKGgGR0BxXFcB2fTTaAdLvmgIR0CQJkszEaVEdX2UKGgGR0BwBbn6l+EzaAdLvGgIR0CQJ2mHxjJ/dX2UKGgGR0BvSl2/zreJaAdNugFoCEdAkCmaa9bosHV9lChoBkdAb3IjkdV/+mgHS+FoCEdAkCr+z6ab4XV9lChoBkdAcuQBw++ueWgHS/NoCEdAkCtBoAXEZXV9lChoBkdAcdLI6bONYWgHS9RoCEdAkCwacNH6M3V9lChoBkdAby3gsK9f1GgHS+doCEdAkC0SN83Mp3V9lChoBkdAcqX1UVBUrGgHS91oCEdAkC9i7sfJWHV9lChoBkdAcCPafzz3AWgHS7VoCEdAkC+5KSPluHV9lChoBkdAa1FtKIznBGgHTXoBaAhHQJAx1OEdvKl1fZQoaAZHQHDoRCx/ustoB0vfaAhHQJAx2tW+49Z1fZQoaAZHQHEpPmHP/rBoB0vYaAhHQJAyrUqhDgJ1fZQoaAZHQHKCf2GqPwNoB0vSaAhHQJA06S3b2151fZQoaAZHQGFRYKQaJhxoB03oA2gIR0CQNQ5hScbzdX2UKGgGR0BxAn4UN8VpaAdL42gIR0CQNaEKE385dX2UKGgGR0BlCp7Z39rHaAdN6ANoCEdAkDZWSdOIqXV9lChoBkdAb/UqEvkBCGgHS8BoCEdAkDaeD3/PxHV9lChoBkdAcSQ/+85CGGgHTQIBaAhHQJA4L2Bas6t1fZQoaAZHQHFxiwKSgXdoB0vzaAhHQJA4jb212JV1fZQoaAZHQHFBerZJ04loB0u0aAhHQJA5RNwiqyZ1fZQoaAZHQG96/lp48lpoB0vEaAhHQJA5gjC53C91fZQoaAZHQG2pzn7pFCtoB0u+aAhHQJA6DSH/Lkl1fZQoaAZHQFwQzYmLLp1oB03oA2gIR0CQOpqUNayKdX2UKGgGR0ByrG8Gs3hoaAdLzmgIR0CQOwYAbQ1KdX2UKGgGR0BzvA4NqgyuaAdL5mgIR0CQO7W4EwFldX2UKGgGR0BysbzwtrbhaAdLxmgIR0CQPG73PAwgdX2UKGgGR0BfvB0IToMbaAdN6ANoCEdAkD0cf/3nIXV9lChoBkdAcSJQT238XWgHS8poCEdAkD187hegMHV9lChoBkdAcgn9bHIZImgHS/toCEdAkD3azu4PPXV9lChoBkdAcIahkAggYGgHS6RoCEdAkD3lnh86WHV9lChoBkdAbTcqAjIJaGgHS+5oCEdAkD5iLqD9O3V9lChoBkdAcOQNkOI682gHS8NoCEdAkD7jrqt5lnV9lChoBkdAcayyWiUPhGgHS8BoCEdAkEFp5mh/RXV9lChoBkdAcTU4jrzGxWgHS+poCEdAkEH2SyMUAXV9lChoBkdAcuDo9cKPXGgHTQ4BaAhHQJBCGtjkMkR1fZQoaAZHQGN1/ZM+NcZoB03oA2gIR0CQQi6AOJ+EdX2UKGgGR0BxIxAdGRV7aAdL0WgIR0CQQkh+fAbidX2UKGgGR0Bwx8M5OrQxaAdNFQFoCEdAkEOTTrmhd3V9lChoBkdAcIdUiY9gW2gHS/poCEdAkEQStA9mpXV9lChoBkdAcYE4e9zwMGgHTSIBaAhHQJBETGQ0XP91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 382, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb66892a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb66892a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb66892a840>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb66892a8e0>", "_build": "<function ActorCriticPolicy._build at 0x7eb66892a980>", "forward": "<function ActorCriticPolicy.forward at 0x7eb66892aa20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb66892aac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb66892ab60>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb66892ac00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb66892aca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb66892ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb66892ade0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb66bf149c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 295710, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737536642194227625, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANNgAr64JYs8ohs9PuaDnL2uI2I9GxFUPAAAAAAAAAAAYOg3vpSDvrwc74865HT9OAATJj4ZTMK5AACAPwAAgD8A9wk+/NEdPb0eAb6Tc1C+xv2CuyM1d70AAAAAAAAAAGbc2rxS9aI/CD13vgkcK7+pJbu88rPzvQAAAAAAAAAAulUfvtygFbxFwm+8TXGjuo4Dej3h4oc7AACAPwAAgD8zfqO9uEDHOn+GjTxKU748VJUfvJg1ejwAAAAAAACAP3MUAr6f56g8VVaWPUuJS74hyyo9fecbPQAAAAAAAAAAamxxvq/bcD2F1kM+EoHpvULR8DuYgYs8AAAAAAAAAACNzCO+sCKQPul7Ar0WZ8e+JZigvfjXKbwAAAAAAAAAAAoef75cDzU7MF8nteCQyzAsc628JoY5NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.71328, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3BNdqtYCMAWyUS+mMAXSUR0B2n1xMnJDFdX2UKGgGR0BzFbcynDR/aAdL6WgIR0B2pb41xbSrdX2UKGgGR0BxLSgi/wiJaAdLvGgIR0B3k/9R77bddX2UKGgGR0Byxbuw5eZ5aAdL0GgIR0B3lW4H5aePdX2UKGgGR0BxRV2ll9SdaAdL0WgIR0B3l6c8TzundX2UKGgGR0BwZdlQMx46aAdLu2gIR0B3mUnw5NoKdX2UKGgGR0BxwPH3lCC0aAdLyGgIR0B3mpbor4FidX2UKGgGR0BzH/SlWOp9aAdNLgFoCEdAd5tzyjHn2nV9lChoBkdAclOGViWmg2gHS+JoCEdAd5yUnG828HV9lChoBkdAcZHXqqwQlWgHTUMBaAhHQHeiqlYU34t1fZQoaAZHQHPy/S6UaAFoB0vGaAhHQHejZqASWZ91fZQoaAZHQHFWa+vhZQpoB0voaAhHQHekB/mT1TR1fZQoaAZHQG5BCSaEzwdoB0vTaAhHQHelw5R0lqt1fZQoaAZHQHFWjY/Vy3loB0u/aAhHQHen0rwvxpd1fZQoaAZHQHN1vFNtZV5oB0voaAhHQHepVyNn5BV1fZQoaAZHQHEL5z5oGpxoB0u4aAhHQHepVQVKwpx1fZQoaAZHQHJPfV3EAHVoB0vYaAhHQHeqss+V1Ol1fZQoaAZHQFbqeRPoFFFoB03oA2gIR0B3sNTOxB3SdX2UKGgGR0BxyYj2SMcZaAdL22gIR0B3s3epGWledX2UKGgGR0BwHFxtHhCMaAdLvWgIR0B3s6NZNfw7dX2UKGgGR0BwBJovi97GaAdL5WgIR0B3s7S9du50dX2UKGgGR0Bycd4gRsdlaAdNRQFoCEdAd7Sn4wh4dXV9lChoBkdAc0Ygk1Mue2gHS+5oCEdAd7Uobn5i3HV9lChoBkdAb3rR/mT1TWgHS+RoCEdAd7k8NQTEi3V9lChoBkdAcL7S/TLGJmgHS/xoCEdAd7rwL3K0U3V9lChoBkdAcv0n2IwdsGgHTUEBaAhHQHe+RK15Sm91fZQoaAZHQHFHy0OVgQZoB0u1aAhHQHe/pTAFgUl1fZQoaAZHQHIZRkI5YHRoB0uyaAhHQHfAxNATqSp1fZQoaAZHQG+5vqs2ehBoB0vCaAhHQHfA0oWpIc11fZQoaAZHQHKvp6D5CWxoB0vwaAhHQHfBXGbTc7B1fZQoaAZHQHFufdEb5uZoB0vOaAhHQHfDRkVeruJ1fZQoaAZHQHLJEmD15B1oB0u8aAhHQHfIdECvHLl1fZQoaAZHQHE4nmzSkTJoB0vdaAhHQHfJK+rU9ZB1fZQoaAZHQHDBHlr/KhdoB0vUaAhHQHfOMMAmzB11fZQoaAZHQHNPl1KXfIloB0vFaAhHQHfP1rqMWGh1fZQoaAZHQHBDjX8O09hoB0viaAhHQHfTIzzmOlx1fZQoaAZHQHD0LcO9WZJoB00XAWgIR0B316fFrEcbdX2UKGgGR0Bugqhg3LmqaAdNBgFoCEdAd9mHdGiHqXV9lChoBkdAbZrXCCSRsGgHS89oCEdAd9t72L5yl3V9lChoBkdAb7LLteD3/WgHS6xoCEdAd9+Pu5SWJXV9lChoBkdAcU8Z6lchT2gHS8poCEdAd+CTIeYD1XV9lChoBkdAct7x8lXzUmgHS9FoCEdAd+2Xko4MnnV9lChoBkdAcU/YyfthNWgHTQcBaAhHQHfxWJSBK+V1fZQoaAZHQHFAqIi1RchoB0vDaAhHQHf01T3qRlp1fZQoaAZHQHD8xU3n6mBoB00LAWgIR0B39ni6xxDLdX2UKGgGR0BxWzVUdaMaaAdL5WgIR0B392Phhpg1dX2UKGgGR0Bd7R91EE1VaAdN6ANoCEdAeAOsIVuaW3V9lChoBkdAci96cRUWEmgHS7doCEdAeARjc2zfJnV9lChoBkdAbkv7vXsgMmgHTfMBaAhHQHgJ13yI55t1fZQoaAZHQHBhgaNuLrJoB0vOaAhHQHgPv6CUX551fZQoaAZHQG6I4i5d4V1oB0vEaAhHQHgQV54W1tx1fZQoaAZHQHJzC4SYgJVoB0v3aAhHQHgRBBNVR1p1fZQoaAZHQFyqFpwjt5VoB03oA2gIR0B4EvLJSzgNdX2UKGgGR0BwShE9dNWVaAdLxWgIR0B4G5WYF7ladX2UKGgGR0BwUb1wo9cKaAdLz2gIR0B4HTzvqkdndX2UKGgGR0BxxZ7CzkZKaAdNOgFoCEdAeB7umaYu03V9lChoBkdAbwOdyT6i02gHS9NoCEdAeCJ9pRGc4HV9lChoBkdAY78lPacqfGgHTegDaAhHQHgmCSJTER91fZQoaAZHQHFPwtSQ5m1oB0vSaAhHQHgm4zJp35h1fZQoaAZHQHDkz4QBgeBoB0vyaAhHQHgrDp5eJHl1fZQoaAZHQHIGbjHXEqFoB0vQaAhHQHgufzjFQ2x1fZQoaAZHQHArmki2UjdoB01FAWgIR0B4L8G8mKIjdX2UKGgGR0BftXvttyggaAdN6ANoCEdAeC/EcKgIyHV9lChoBkdAcUthmoR7JGgHS9toCEdAeDPLh73PA3V9lChoBkdAc1KIJJGvwGgHS9doCEdAeDa3eenQ6nV9lChoBkdAcGVWAf+0gWgHS9poCEdAeDfxtYSxq3V9lChoBkdAcX2QAuIykGgHS8doCEdAeD6frKNhmXV9lChoBkdAcXLtxdY4hmgHS/xoCEdAeD974BV+7XV9lChoBkdAczXNrTH80mgHS+JoCEdAeEJ9mHxjKHV9lChoBkdAcfiX/YJ3PmgHTQYBaAhHQHhGVAqur6t1fZQoaAZHQHIyFv/BFd9oB0vOaAhHQHk204//vOR1fZQoaAZHQHI19Aood+5oB00xAWgIR0B5O3F6zE75dX2UKGgGR0BxEevq1PWQaAdLwmgIR0B5PdyU9pyqdX2UKGgGR0Buz9/6O5rhaAdL0GgIR0B5PkaNuLrHdX2UKGgGR0Bxk6SV4X41aAdNNgFoCEdAeT9y4FzMinV9lChoBkdAb8cxwhnrZGgHS85oCEdAeUG889wFT3V9lChoBkdAbu0bQTmGNGgHS69oCEdAeUZv1UVBU3V9lChoBkdActZiSq2jPGgHS9RoCEdAeU6FnqVyFXV9lChoBkdAcO722G7Bf2gHTT4BaAhHQHlPGP5pJwt1fZQoaAZHQHB8UR8MNMJoB0vUaAhHQHlSwIyCWeJ1fZQoaAZHQHCfmPYFqztoB0vwaAhHQHlUWReTmnx1fZQoaAZHQHEcfMfRu0loB00hAWgIR0B5WLZwn6VMdX2UKGgGR0Bwla/7BO58aAdL+2gIR0B5WVRgqmTDdX2UKGgGR0BhfIKhL5ARaAdN6ANoCEdAeVlpztCzC3V9lChoBkdAbzDT72tdRmgHS9xoCEdAeVtMnZ00WXV9lChoBkdAYbSfthNM5GgHTegDaAhHQHliI1k1/Dt1fZQoaAZHQG4nuDJ2dNFoB0vjaAhHQHli1tO2y9p1fZQoaAZHQF1bRIz3yqdoB03oA2gIR0B5YzNTtLL7dX2UKGgGR0BxJcHryDqXaAdLw2gIR0B5ZJYA80UHdX2UKGgGR0Bxknor4FibaAdL2mgIR0B5ZQpVjqfOdX2UKGgGR0BxWtzEJjUeaAdL3GgIR0B5aTLSuyNXdX2UKGgGR0Bx7CGzru6VaAdL4GgIR0B5a69AX2ugdX2UKGgGR0Bs7m0svqTsaAdLv2gIR0B5b9QwblzVdX2UKGgGR0BwPHkMkQf7aAdNNQFoCEdAeXCxwQ176nV9lChoBkdAcCJgjQiRn2gHS8BoCEdAeXDKnvUjLXV9lChoBkdAcj5yLQ5WBGgHS+xoCEdAeXSl2/zreXV9lChoBkdAbQ0DUVi4KGgHTWkBaAhHQHl04JqqOtJ1fZQoaAZHQHFnXCfpUxVoB0vZaAhHQHl0247Rv3t1fZQoaAZHQHNTAymALApoB0vyaAhHQHl2/e+Eh7p1fZQoaAZHQHL411SwW31oB0vLaAhHQHl/yHARChN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 522, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwePGlweXRob24taW5wdXQtOS1hZWIzNzViNjY4Mzk+lIwIPGxhbWJkYT6UjAg8bGFtYmRhPpRLBEMGgACgQ4AAlEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGH2UfZQoaBWMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwIPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgWjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f2e55c55699018bda1e7785e1de39ab9bf9d7c5f177f957acb4aebaceec479f
|
3 |
+
size 147573
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,32 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": 0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "gAWV+
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 10,
|
80 |
-
"n_steps": 2048,
|
81 |
-
"gamma": 0.99,
|
82 |
-
"gae_lambda": 0.95,
|
83 |
-
"ent_coef": 0.0,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 10,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eb66892a700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb66892a7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb66892a840>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb66892a8e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eb66892a980>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eb66892aa20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb66892aac0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb66892ab60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eb66892ac00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb66892aca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb66892ad40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb66892ade0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eb66bf149c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 295710,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1737536642194227625,
|
30 |
+
"learning_rate": 0.0,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANNgAr64JYs8ohs9PuaDnL2uI2I9GxFUPAAAAAAAAAAAYOg3vpSDvrwc74865HT9OAATJj4ZTMK5AACAPwAAgD8A9wk+/NEdPb0eAb6Tc1C+xv2CuyM1d70AAAAAAAAAAGbc2rxS9aI/CD13vgkcK7+pJbu88rPzvQAAAAAAAAAAulUfvtygFbxFwm+8TXGjuo4Dej3h4oc7AACAPwAAgD8zfqO9uEDHOn+GjTxKU748VJUfvJg1ejwAAAAAAACAP3MUAr6f56g8VVaWPUuJS74hyyo9fecbPQAAAAAAAAAAamxxvq/bcD2F1kM+EoHpvULR8DuYgYs8AAAAAAAAAACNzCO+sCKQPul7Ar0WZ8e+JZigvfjXKbwAAAAAAAAAAAoef75cDzU7MF8nteCQyzAsc628JoY5NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.71328,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3BNdqtYCMAWyUS+mMAXSUR0B2n1xMnJDFdX2UKGgGR0BzFbcynDR/aAdL6WgIR0B2pb41xbSrdX2UKGgGR0BxLSgi/wiJaAdLvGgIR0B3k/9R77bddX2UKGgGR0Byxbuw5eZ5aAdL0GgIR0B3lW4H5aePdX2UKGgGR0BxRV2ll9SdaAdL0WgIR0B3l6c8TzundX2UKGgGR0BwZdlQMx46aAdLu2gIR0B3mUnw5NoKdX2UKGgGR0BxwPH3lCC0aAdLyGgIR0B3mpbor4FidX2UKGgGR0BzH/SlWOp9aAdNLgFoCEdAd5tzyjHn2nV9lChoBkdAclOGViWmg2gHS+JoCEdAd5yUnG828HV9lChoBkdAcZHXqqwQlWgHTUMBaAhHQHeiqlYU34t1fZQoaAZHQHPy/S6UaAFoB0vGaAhHQHejZqASWZ91fZQoaAZHQHFWa+vhZQpoB0voaAhHQHekB/mT1TR1fZQoaAZHQG5BCSaEzwdoB0vTaAhHQHelw5R0lqt1fZQoaAZHQHFWjY/Vy3loB0u/aAhHQHen0rwvxpd1fZQoaAZHQHN1vFNtZV5oB0voaAhHQHepVyNn5BV1fZQoaAZHQHEL5z5oGpxoB0u4aAhHQHepVQVKwpx1fZQoaAZHQHJPfV3EAHVoB0vYaAhHQHeqss+V1Ol1fZQoaAZHQFbqeRPoFFFoB03oA2gIR0B3sNTOxB3SdX2UKGgGR0BxyYj2SMcZaAdL22gIR0B3s3epGWledX2UKGgGR0BwHFxtHhCMaAdLvWgIR0B3s6NZNfw7dX2UKGgGR0BwBJovi97GaAdL5WgIR0B3s7S9du50dX2UKGgGR0Bycd4gRsdlaAdNRQFoCEdAd7Sn4wh4dXV9lChoBkdAc0Ygk1Mue2gHS+5oCEdAd7Uobn5i3HV9lChoBkdAb3rR/mT1TWgHS+RoCEdAd7k8NQTEi3V9lChoBkdAcL7S/TLGJmgHS/xoCEdAd7rwL3K0U3V9lChoBkdAcv0n2IwdsGgHTUEBaAhHQHe+RK15Sm91fZQoaAZHQHFHy0OVgQZoB0u1aAhHQHe/pTAFgUl1fZQoaAZHQHIZRkI5YHRoB0uyaAhHQHfAxNATqSp1fZQoaAZHQG+5vqs2ehBoB0vCaAhHQHfA0oWpIc11fZQoaAZHQHKvp6D5CWxoB0vwaAhHQHfBXGbTc7B1fZQoaAZHQHFufdEb5uZoB0vOaAhHQHfDRkVeruJ1fZQoaAZHQHLJEmD15B1oB0u8aAhHQHfIdECvHLl1fZQoaAZHQHE4nmzSkTJoB0vdaAhHQHfJK+rU9ZB1fZQoaAZHQHDBHlr/KhdoB0vUaAhHQHfOMMAmzB11fZQoaAZHQHNPl1KXfIloB0vFaAhHQHfP1rqMWGh1fZQoaAZHQHBDjX8O09hoB0viaAhHQHfTIzzmOlx1fZQoaAZHQHD0LcO9WZJoB00XAWgIR0B316fFrEcbdX2UKGgGR0Bugqhg3LmqaAdNBgFoCEdAd9mHdGiHqXV9lChoBkdAbZrXCCSRsGgHS89oCEdAd9t72L5yl3V9lChoBkdAb7LLteD3/WgHS6xoCEdAd9+Pu5SWJXV9lChoBkdAcU8Z6lchT2gHS8poCEdAd+CTIeYD1XV9lChoBkdAct7x8lXzUmgHS9FoCEdAd+2Xko4MnnV9lChoBkdAcU/YyfthNWgHTQcBaAhHQHfxWJSBK+V1fZQoaAZHQHFAqIi1RchoB0vDaAhHQHf01T3qRlp1fZQoaAZHQHD8xU3n6mBoB00LAWgIR0B39ni6xxDLdX2UKGgGR0BxWzVUdaMaaAdL5WgIR0B392Phhpg1dX2UKGgGR0Bd7R91EE1VaAdN6ANoCEdAeAOsIVuaW3V9lChoBkdAci96cRUWEmgHS7doCEdAeARjc2zfJnV9lChoBkdAbkv7vXsgMmgHTfMBaAhHQHgJ13yI55t1fZQoaAZHQHBhgaNuLrJoB0vOaAhHQHgPv6CUX551fZQoaAZHQG6I4i5d4V1oB0vEaAhHQHgQV54W1tx1fZQoaAZHQHJzC4SYgJVoB0v3aAhHQHgRBBNVR1p1fZQoaAZHQFyqFpwjt5VoB03oA2gIR0B4EvLJSzgNdX2UKGgGR0BwShE9dNWVaAdLxWgIR0B4G5WYF7ladX2UKGgGR0BwUb1wo9cKaAdLz2gIR0B4HTzvqkdndX2UKGgGR0BxxZ7CzkZKaAdNOgFoCEdAeB7umaYu03V9lChoBkdAbwOdyT6i02gHS9NoCEdAeCJ9pRGc4HV9lChoBkdAY78lPacqfGgHTegDaAhHQHgmCSJTER91fZQoaAZHQHFPwtSQ5m1oB0vSaAhHQHgm4zJp35h1fZQoaAZHQHDkz4QBgeBoB0vyaAhHQHgrDp5eJHl1fZQoaAZHQHIGbjHXEqFoB0vQaAhHQHgufzjFQ2x1fZQoaAZHQHArmki2UjdoB01FAWgIR0B4L8G8mKIjdX2UKGgGR0BftXvttyggaAdN6ANoCEdAeC/EcKgIyHV9lChoBkdAcUthmoR7JGgHS9toCEdAeDPLh73PA3V9lChoBkdAc1KIJJGvwGgHS9doCEdAeDa3eenQ6nV9lChoBkdAcGVWAf+0gWgHS9poCEdAeDfxtYSxq3V9lChoBkdAcX2QAuIykGgHS8doCEdAeD6frKNhmXV9lChoBkdAcXLtxdY4hmgHS/xoCEdAeD974BV+7XV9lChoBkdAczXNrTH80mgHS+JoCEdAeEJ9mHxjKHV9lChoBkdAcfiX/YJ3PmgHTQYBaAhHQHhGVAqur6t1fZQoaAZHQHIyFv/BFd9oB0vOaAhHQHk204//vOR1fZQoaAZHQHI19Aood+5oB00xAWgIR0B5O3F6zE75dX2UKGgGR0BxEevq1PWQaAdLwmgIR0B5PdyU9pyqdX2UKGgGR0Buz9/6O5rhaAdL0GgIR0B5PkaNuLrHdX2UKGgGR0Bxk6SV4X41aAdNNgFoCEdAeT9y4FzMinV9lChoBkdAb8cxwhnrZGgHS85oCEdAeUG889wFT3V9lChoBkdAbu0bQTmGNGgHS69oCEdAeUZv1UVBU3V9lChoBkdActZiSq2jPGgHS9RoCEdAeU6FnqVyFXV9lChoBkdAcO722G7Bf2gHTT4BaAhHQHlPGP5pJwt1fZQoaAZHQHB8UR8MNMJoB0vUaAhHQHlSwIyCWeJ1fZQoaAZHQHCfmPYFqztoB0vwaAhHQHlUWReTmnx1fZQoaAZHQHEcfMfRu0loB00hAWgIR0B5WLZwn6VMdX2UKGgGR0Bwla/7BO58aAdL+2gIR0B5WVRgqmTDdX2UKGgGR0BhfIKhL5ARaAdN6ANoCEdAeVlpztCzC3V9lChoBkdAbzDT72tdRmgHS9xoCEdAeVtMnZ00WXV9lChoBkdAYbSfthNM5GgHTegDaAhHQHliI1k1/Dt1fZQoaAZHQG4nuDJ2dNFoB0vjaAhHQHli1tO2y9p1fZQoaAZHQF1bRIz3yqdoB03oA2gIR0B5YzNTtLL7dX2UKGgGR0BxJcHryDqXaAdLw2gIR0B5ZJYA80UHdX2UKGgGR0Bxknor4FibaAdL2mgIR0B5ZQpVjqfOdX2UKGgGR0BxWtzEJjUeaAdL3GgIR0B5aTLSuyNXdX2UKGgGR0Bx7CGzru6VaAdL4GgIR0B5a69AX2ugdX2UKGgGR0Bs7m0svqTsaAdLv2gIR0B5b9QwblzVdX2UKGgGR0BwPHkMkQf7aAdNNQFoCEdAeXCxwQ176nV9lChoBkdAcCJgjQiRn2gHS8BoCEdAeXDKnvUjLXV9lChoBkdAcj5yLQ5WBGgHS+xoCEdAeXSl2/zreXV9lChoBkdAbQ0DUVi4KGgHTWkBaAhHQHl04JqqOtJ1fZQoaAZHQHFnXCfpUxVoB0vZaAhHQHl0247Rv3t1fZQoaAZHQHNTAymALApoB0vyaAhHQHl2/e+Eh7p1fZQoaAZHQHL411SwW31oB0vLaAhHQHl/yHARChN1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 522,
|
55 |
+
"n_steps": 2048,
|
56 |
+
"gamma": 0.99,
|
57 |
+
"gae_lambda": 0.95,
|
58 |
+
"ent_coef": 0.0,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwePGlweXRob24taW5wdXQtOS1hZWIzNzViNjY4Mzk+lIwIPGxhbWJkYT6UjAg8bGFtYmRhPpRLBEMGgACgQ4AAlEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGH2UfZQoaBWMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwIPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgWjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 10,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eb294a2c47879142f1a8f781b282ac22e43343144fe2dcb437bf42e000d74ed
|
3 |
+
size 88490
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 245.094811, "std_reward": 49.64531594897125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-22T09:12:33.714496"}
|