Xmaster6y commited on
Commit
c722c37
·
verified ·
1 Parent(s): b54f101

Updated model

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 244.71 +/- 45.51
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 245.09 +/- 49.65
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e8e13856980>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e8e13856a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e8e13856ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e8e13856b60>", "_build": "<function ActorCriticPolicy._build at 0x7e8e13856c00>", "forward": "<function ActorCriticPolicy.forward at 0x7e8e13856ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e8e13856d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e8e13856de0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e8e13856e80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e8e13856f20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e8e13856fc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e8e13857060>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8e139c1b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 798720, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737482699378465084, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAABoAQT2G8pw/RGYdPmdKKb+DEio9MTsRPQAAAAAAAAAAIBs9vm6Rrbys9J44xON3ttmPGj4srrO3AACAPwAAgD8gVj++7NDXPD5tdj3XGQy8qEptvhgmHT0AAIA/AACAP7C4d74+K3E/G3L2vi2TFr8OdYi+Yb2RvQAAAAAAAAAApdSUvj4cmT0dWhc+ixdlvmsHLDxtqfS7AAAAAAAAAAAg84C+DMcpPkkUqj02RIq+Jq4dvaoAfz0AAAAAAAAAADONlD1PU309UerEvqLMKb4K/NG9kt7KvAAAAAAAAAAAWt2LPr1ECj+GaAC+ISYtv6/3tD5YL5q+AAAAAAAAAADWXWi+ZJUZvaNf8rwKeqS9tkSzPiLya74AAAAAAACAP5qvcj37xZo953yovoKJBL4BkcK99U2jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6006400000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+iW/BWPtGMAWyUS+GMAXSUR0CPjkfp2U0OdX2UKGgGR0BvWogxJul5aAdL0WgIR0CPjnq+rU9ZdX2UKGgGR0BwhBDWsijdaAdL1WgIR0CPjwH+qBEsdX2UKGgGR0BwWsGyHEdeaAdLzmgIR0CPj7vuPV/ddX2UKGgGR0Bzv+PZIxxlaAdL+GgIR0CPkKNqgyuZdX2UKGgGR0Bd1T1TR6WxaAdN6ANoCEdAj5IBGhEjPnV9lChoBkdAalqXY150KmgHTQYCaAhHQI+SmgFotcx1fZQoaAZHQG4YPAGjbi9oB0vvaAhHQI+UFBa9sad1fZQoaAZHQHBsNEkSmIloB0uraAhHQI+WDsfJV811fZQoaAZHQHFrOAqd6LRoB0vMaAhHQI+W/8IiTt91fZQoaAZHQHDEtKqXF99oB0vDaAhHQI+XmwLVnVZ1fZQoaAZHQHCoqODJ2dNoB0viaAhHQI+Xv8yeqaR1fZQoaAZHQHAiEmICU5doB0vGaAhHQI+YVqzqrzZ1fZQoaAZHQHDHY2fkFOhoB0vXaAhHQI+adyT6i0x1fZQoaAZHQHHJSFXaJyhoB0vpaAhHQI+asQ2/BWR1fZQoaAZHQG4uvDHfdh1oB0vMaAhHQI+bxCv5gw51fZQoaAZHQGM3k+gUUPBoB03oA2gIR0CPnM5imVJMdX2UKGgGR0BwgYmLLpzLaAdL1mgIR0CPniB4lhPTdX2UKGgGR0By3IzXSSeRaAdLx2gIR0CPnmrqdH2AdX2UKGgGR0Bywy0iQkonaAdLyWgIR0CPn7cpLEk0dX2UKGgGR0BzxSe8PFvRaAdNGAFoCEdAj6IJLM9r43V9lChoBkdAcfBuxKQJX2gHTSoBaAhHQI+ik5n13+x1fZQoaAZHQHBVLQ9ic5NoB0veaAhHQI+j96AvtdB1fZQoaAZHQHK/9jLB9CxoB0vvaAhHQI+lzQZ4wAV1fZQoaAZHQETC3PzFuNxoB0tjaAhHQI+mmkSElE91fZQoaAZHQHKYMenyd4FoB00/AWgIR0CPps0Jng5zdX2UKGgGR0ByyyZKFqSHaAdL22gIR0CPptn2ZiNLdX2UKGgGR0Byj7s+mm+CaAdL6WgIR0CPpxDUExIrdX2UKGgGR0ByqSwyIpH7aAdL4mgIR0CPqIDHwPRRdX2UKGgGR0Bya/eenQ6ZaAdL/GgIR0CPrEgzP8htdX2UKGgGR0BwIA45tFa0aAdL2GgIR0CPruxu89OidX2UKGgGR0BxHlB4Uvf1aAdL1mgIR0CPr/5Sm65HdX2UKGgGR0BwIA1UEPlNaAdL02gIR0CPsC7FKkEcdX2UKGgGR0Bvsbj/+85CaAdLx2gIR0CPsX9kSVW0dX2UKGgGR0BxF6R8twrEaAdL/mgIR0CPsbJ7LMcIdX2UKGgGR0Bf0ujua4MGaAdN6ANoCEdAj7QviT+vQnV9lChoBkdAb9UZBsyi22gHS71oCEdAkBMUsrd30XV9lChoBkdAb/w9M9KVZGgHS9NoCEdAkBUTy4FzMnV9lChoBkdAbSZx9XtBwGgHS79oCEdAkBU5w4sEq3V9lChoBkdAcXER7qptJmgHS8RoCEdAkBVCH6/IsHV9lChoBkdAciO3aSLZSWgHS7poCEdAkBW672+PBHV9lChoBkdAcPFR4hUzbmgHTQIBaAhHQJAXk6BAfMh1fZQoaAZHQHCBQJPZZjhoB0vEaAhHQJAX36zmfXh1fZQoaAZHQHKrmZZ0SytoB0v1aAhHQJAYkZBLPD51fZQoaAZHQHGrGv4dp7FoB0u5aAhHQJAZxuaWom51fZQoaAZHQG8SXBYV6/toB0vUaAhHQJAac163RXx1fZQoaAZHQHPjB0+1SfloB0voaAhHQJAazxlQMx51fZQoaAZHQGK957w8W9FoB03oA2gIR0CQG+JNTLntdX2UKGgGR0ByxCE4//vOaAdNAAFoCEdAkBwfBacI7nV9lChoBkdAQjhj+aScLGgHS7RoCEdAkBzzoMa0hXV9lChoBkdAb8K+QlruY2gHS+BoCEdAkB1MX3xnWnV9lChoBkdAckyuVopQUGgHTS0BaAhHQJAev2rXDm91fZQoaAZHQG6WREnb7CVoB0vgaAhHQJAf8xgy/K11fZQoaAZHQHNPeo1k1/FoB00JAWgIR0CQH/udf9gndX2UKGgGR0BxPFbzK9wnaAdLzGgIR0CQIMyGzru6dX2UKGgGR0Bb+Boh6jWTaAdN6ANoCEdAkCITwYtQK3V9lChoBkdAId9rO7g882gHS69oCEdAkCOcTviLl3V9lChoBkdAcWhzAeq7y2gHTQwBaAhHQJAj9ZU1hst1fZQoaAZHQF8txbSqlxhoB03oA2gIR0CQJCxTbWVedX2UKGgGR0BwWdl5GBnSaAdLy2gIR0CQJbnm7rcCdX2UKGgGR0BxXFcB2fTTaAdLvmgIR0CQJkszEaVEdX2UKGgGR0BwBbn6l+EzaAdLvGgIR0CQJ2mHxjJ/dX2UKGgGR0BvSl2/zreJaAdNugFoCEdAkCmaa9bosHV9lChoBkdAb3IjkdV/+mgHS+FoCEdAkCr+z6ab4XV9lChoBkdAcuQBw++ueWgHS/NoCEdAkCtBoAXEZXV9lChoBkdAcdLI6bONYWgHS9RoCEdAkCwacNH6M3V9lChoBkdAby3gsK9f1GgHS+doCEdAkC0SN83Mp3V9lChoBkdAcqX1UVBUrGgHS91oCEdAkC9i7sfJWHV9lChoBkdAcCPafzz3AWgHS7VoCEdAkC+5KSPluHV9lChoBkdAa1FtKIznBGgHTXoBaAhHQJAx1OEdvKl1fZQoaAZHQHDoRCx/ustoB0vfaAhHQJAx2tW+49Z1fZQoaAZHQHEpPmHP/rBoB0vYaAhHQJAyrUqhDgJ1fZQoaAZHQHKCf2GqPwNoB0vSaAhHQJA06S3b2151fZQoaAZHQGFRYKQaJhxoB03oA2gIR0CQNQ5hScbzdX2UKGgGR0BxAn4UN8VpaAdL42gIR0CQNaEKE385dX2UKGgGR0BlCp7Z39rHaAdN6ANoCEdAkDZWSdOIqXV9lChoBkdAb/UqEvkBCGgHS8BoCEdAkDaeD3/PxHV9lChoBkdAcSQ/+85CGGgHTQIBaAhHQJA4L2Bas6t1fZQoaAZHQHFxiwKSgXdoB0vzaAhHQJA4jb212JV1fZQoaAZHQHFBerZJ04loB0u0aAhHQJA5RNwiqyZ1fZQoaAZHQG96/lp48lpoB0vEaAhHQJA5gjC53C91fZQoaAZHQG2pzn7pFCtoB0u+aAhHQJA6DSH/Lkl1fZQoaAZHQFwQzYmLLp1oB03oA2gIR0CQOpqUNayKdX2UKGgGR0ByrG8Gs3hoaAdLzmgIR0CQOwYAbQ1KdX2UKGgGR0BzvA4NqgyuaAdL5mgIR0CQO7W4EwFldX2UKGgGR0BysbzwtrbhaAdLxmgIR0CQPG73PAwgdX2UKGgGR0BfvB0IToMbaAdN6ANoCEdAkD0cf/3nIXV9lChoBkdAcSJQT238XWgHS8poCEdAkD187hegMHV9lChoBkdAcgn9bHIZImgHS/toCEdAkD3azu4PPXV9lChoBkdAcIahkAggYGgHS6RoCEdAkD3lnh86WHV9lChoBkdAbTcqAjIJaGgHS+5oCEdAkD5iLqD9O3V9lChoBkdAcOQNkOI682gHS8NoCEdAkD7jrqt5lnV9lChoBkdAcayyWiUPhGgHS8BoCEdAkEFp5mh/RXV9lChoBkdAcTU4jrzGxWgHS+poCEdAkEH2SyMUAXV9lChoBkdAcuDo9cKPXGgHTQ4BaAhHQJBCGtjkMkR1fZQoaAZHQGN1/ZM+NcZoB03oA2gIR0CQQi6AOJ+EdX2UKGgGR0BxIxAdGRV7aAdL0WgIR0CQQkh+fAbidX2UKGgGR0Bwx8M5OrQxaAdNFQFoCEdAkEOTTrmhd3V9lChoBkdAcIdUiY9gW2gHS/poCEdAkEQStA9mpXV9lChoBkdAcYE4e9zwMGgHTSIBaAhHQJBETGQ0XP91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 382, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb66892a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb66892a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb66892a840>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb66892a8e0>", "_build": "<function ActorCriticPolicy._build at 0x7eb66892a980>", "forward": "<function ActorCriticPolicy.forward at 0x7eb66892aa20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb66892aac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb66892ab60>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb66892ac00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb66892aca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb66892ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb66892ade0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb66bf149c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 295710, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737536642194227625, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANNgAr64JYs8ohs9PuaDnL2uI2I9GxFUPAAAAAAAAAAAYOg3vpSDvrwc74865HT9OAATJj4ZTMK5AACAPwAAgD8A9wk+/NEdPb0eAb6Tc1C+xv2CuyM1d70AAAAAAAAAAGbc2rxS9aI/CD13vgkcK7+pJbu88rPzvQAAAAAAAAAAulUfvtygFbxFwm+8TXGjuo4Dej3h4oc7AACAPwAAgD8zfqO9uEDHOn+GjTxKU748VJUfvJg1ejwAAAAAAACAP3MUAr6f56g8VVaWPUuJS74hyyo9fecbPQAAAAAAAAAAamxxvq/bcD2F1kM+EoHpvULR8DuYgYs8AAAAAAAAAACNzCO+sCKQPul7Ar0WZ8e+JZigvfjXKbwAAAAAAAAAAAoef75cDzU7MF8nteCQyzAsc628JoY5NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.71328, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3BNdqtYCMAWyUS+mMAXSUR0B2n1xMnJDFdX2UKGgGR0BzFbcynDR/aAdL6WgIR0B2pb41xbSrdX2UKGgGR0BxLSgi/wiJaAdLvGgIR0B3k/9R77bddX2UKGgGR0Byxbuw5eZ5aAdL0GgIR0B3lW4H5aePdX2UKGgGR0BxRV2ll9SdaAdL0WgIR0B3l6c8TzundX2UKGgGR0BwZdlQMx46aAdLu2gIR0B3mUnw5NoKdX2UKGgGR0BxwPH3lCC0aAdLyGgIR0B3mpbor4FidX2UKGgGR0BzH/SlWOp9aAdNLgFoCEdAd5tzyjHn2nV9lChoBkdAclOGViWmg2gHS+JoCEdAd5yUnG828HV9lChoBkdAcZHXqqwQlWgHTUMBaAhHQHeiqlYU34t1fZQoaAZHQHPy/S6UaAFoB0vGaAhHQHejZqASWZ91fZQoaAZHQHFWa+vhZQpoB0voaAhHQHekB/mT1TR1fZQoaAZHQG5BCSaEzwdoB0vTaAhHQHelw5R0lqt1fZQoaAZHQHFWjY/Vy3loB0u/aAhHQHen0rwvxpd1fZQoaAZHQHN1vFNtZV5oB0voaAhHQHepVyNn5BV1fZQoaAZHQHEL5z5oGpxoB0u4aAhHQHepVQVKwpx1fZQoaAZHQHJPfV3EAHVoB0vYaAhHQHeqss+V1Ol1fZQoaAZHQFbqeRPoFFFoB03oA2gIR0B3sNTOxB3SdX2UKGgGR0BxyYj2SMcZaAdL22gIR0B3s3epGWledX2UKGgGR0BwHFxtHhCMaAdLvWgIR0B3s6NZNfw7dX2UKGgGR0BwBJovi97GaAdL5WgIR0B3s7S9du50dX2UKGgGR0Bycd4gRsdlaAdNRQFoCEdAd7Sn4wh4dXV9lChoBkdAc0Ygk1Mue2gHS+5oCEdAd7Uobn5i3HV9lChoBkdAb3rR/mT1TWgHS+RoCEdAd7k8NQTEi3V9lChoBkdAcL7S/TLGJmgHS/xoCEdAd7rwL3K0U3V9lChoBkdAcv0n2IwdsGgHTUEBaAhHQHe+RK15Sm91fZQoaAZHQHFHy0OVgQZoB0u1aAhHQHe/pTAFgUl1fZQoaAZHQHIZRkI5YHRoB0uyaAhHQHfAxNATqSp1fZQoaAZHQG+5vqs2ehBoB0vCaAhHQHfA0oWpIc11fZQoaAZHQHKvp6D5CWxoB0vwaAhHQHfBXGbTc7B1fZQoaAZHQHFufdEb5uZoB0vOaAhHQHfDRkVeruJ1fZQoaAZHQHLJEmD15B1oB0u8aAhHQHfIdECvHLl1fZQoaAZHQHE4nmzSkTJoB0vdaAhHQHfJK+rU9ZB1fZQoaAZHQHDBHlr/KhdoB0vUaAhHQHfOMMAmzB11fZQoaAZHQHNPl1KXfIloB0vFaAhHQHfP1rqMWGh1fZQoaAZHQHBDjX8O09hoB0viaAhHQHfTIzzmOlx1fZQoaAZHQHD0LcO9WZJoB00XAWgIR0B316fFrEcbdX2UKGgGR0Bugqhg3LmqaAdNBgFoCEdAd9mHdGiHqXV9lChoBkdAbZrXCCSRsGgHS89oCEdAd9t72L5yl3V9lChoBkdAb7LLteD3/WgHS6xoCEdAd9+Pu5SWJXV9lChoBkdAcU8Z6lchT2gHS8poCEdAd+CTIeYD1XV9lChoBkdAct7x8lXzUmgHS9FoCEdAd+2Xko4MnnV9lChoBkdAcU/YyfthNWgHTQcBaAhHQHfxWJSBK+V1fZQoaAZHQHFAqIi1RchoB0vDaAhHQHf01T3qRlp1fZQoaAZHQHD8xU3n6mBoB00LAWgIR0B39ni6xxDLdX2UKGgGR0BxWzVUdaMaaAdL5WgIR0B392Phhpg1dX2UKGgGR0Bd7R91EE1VaAdN6ANoCEdAeAOsIVuaW3V9lChoBkdAci96cRUWEmgHS7doCEdAeARjc2zfJnV9lChoBkdAbkv7vXsgMmgHTfMBaAhHQHgJ13yI55t1fZQoaAZHQHBhgaNuLrJoB0vOaAhHQHgPv6CUX551fZQoaAZHQG6I4i5d4V1oB0vEaAhHQHgQV54W1tx1fZQoaAZHQHJzC4SYgJVoB0v3aAhHQHgRBBNVR1p1fZQoaAZHQFyqFpwjt5VoB03oA2gIR0B4EvLJSzgNdX2UKGgGR0BwShE9dNWVaAdLxWgIR0B4G5WYF7ladX2UKGgGR0BwUb1wo9cKaAdLz2gIR0B4HTzvqkdndX2UKGgGR0BxxZ7CzkZKaAdNOgFoCEdAeB7umaYu03V9lChoBkdAbwOdyT6i02gHS9NoCEdAeCJ9pRGc4HV9lChoBkdAY78lPacqfGgHTegDaAhHQHgmCSJTER91fZQoaAZHQHFPwtSQ5m1oB0vSaAhHQHgm4zJp35h1fZQoaAZHQHDkz4QBgeBoB0vyaAhHQHgrDp5eJHl1fZQoaAZHQHIGbjHXEqFoB0vQaAhHQHgufzjFQ2x1fZQoaAZHQHArmki2UjdoB01FAWgIR0B4L8G8mKIjdX2UKGgGR0BftXvttyggaAdN6ANoCEdAeC/EcKgIyHV9lChoBkdAcUthmoR7JGgHS9toCEdAeDPLh73PA3V9lChoBkdAc1KIJJGvwGgHS9doCEdAeDa3eenQ6nV9lChoBkdAcGVWAf+0gWgHS9poCEdAeDfxtYSxq3V9lChoBkdAcX2QAuIykGgHS8doCEdAeD6frKNhmXV9lChoBkdAcXLtxdY4hmgHS/xoCEdAeD974BV+7XV9lChoBkdAczXNrTH80mgHS+JoCEdAeEJ9mHxjKHV9lChoBkdAcfiX/YJ3PmgHTQYBaAhHQHhGVAqur6t1fZQoaAZHQHIyFv/BFd9oB0vOaAhHQHk204//vOR1fZQoaAZHQHI19Aood+5oB00xAWgIR0B5O3F6zE75dX2UKGgGR0BxEevq1PWQaAdLwmgIR0B5PdyU9pyqdX2UKGgGR0Buz9/6O5rhaAdL0GgIR0B5PkaNuLrHdX2UKGgGR0Bxk6SV4X41aAdNNgFoCEdAeT9y4FzMinV9lChoBkdAb8cxwhnrZGgHS85oCEdAeUG889wFT3V9lChoBkdAbu0bQTmGNGgHS69oCEdAeUZv1UVBU3V9lChoBkdActZiSq2jPGgHS9RoCEdAeU6FnqVyFXV9lChoBkdAcO722G7Bf2gHTT4BaAhHQHlPGP5pJwt1fZQoaAZHQHB8UR8MNMJoB0vUaAhHQHlSwIyCWeJ1fZQoaAZHQHCfmPYFqztoB0vwaAhHQHlUWReTmnx1fZQoaAZHQHEcfMfRu0loB00hAWgIR0B5WLZwn6VMdX2UKGgGR0Bwla/7BO58aAdL+2gIR0B5WVRgqmTDdX2UKGgGR0BhfIKhL5ARaAdN6ANoCEdAeVlpztCzC3V9lChoBkdAbzDT72tdRmgHS9xoCEdAeVtMnZ00WXV9lChoBkdAYbSfthNM5GgHTegDaAhHQHliI1k1/Dt1fZQoaAZHQG4nuDJ2dNFoB0vjaAhHQHli1tO2y9p1fZQoaAZHQF1bRIz3yqdoB03oA2gIR0B5YzNTtLL7dX2UKGgGR0BxJcHryDqXaAdLw2gIR0B5ZJYA80UHdX2UKGgGR0Bxknor4FibaAdL2mgIR0B5ZQpVjqfOdX2UKGgGR0BxWtzEJjUeaAdL3GgIR0B5aTLSuyNXdX2UKGgGR0Bx7CGzru6VaAdL4GgIR0B5a69AX2ugdX2UKGgGR0Bs7m0svqTsaAdLv2gIR0B5b9QwblzVdX2UKGgGR0BwPHkMkQf7aAdNNQFoCEdAeXCxwQ176nV9lChoBkdAcCJgjQiRn2gHS8BoCEdAeXDKnvUjLXV9lChoBkdAcj5yLQ5WBGgHS+xoCEdAeXSl2/zreXV9lChoBkdAbQ0DUVi4KGgHTWkBaAhHQHl04JqqOtJ1fZQoaAZHQHFnXCfpUxVoB0vZaAhHQHl0247Rv3t1fZQoaAZHQHNTAymALApoB0vyaAhHQHl2/e+Eh7p1fZQoaAZHQHL411SwW31oB0vLaAhHQHl/yHARChN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 522, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwePGlweXRob24taW5wdXQtOS1hZWIzNzViNjY4Mzk+lIwIPGxhbWJkYT6UjAg8bGFtYmRhPpRLBEMGgACgQ4AAlEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGH2UfZQoaBWMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwIPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgWjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b11a878e09d007615f416be63e2dd72da08fad95b669b8447818066bfd239eb
3
- size 147767
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2e55c55699018bda1e7785e1de39ab9bf9d7c5f177f957acb4aebaceec479f
3
+ size 147573
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7e8e13856980>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e8e13856a20>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e8e13856ac0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e8e13856b60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7e8e13856c00>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7e8e13856ca0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e8e13856d40>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e8e13856de0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7e8e13856e80>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e8e13856f20>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e8e13856fc0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e8e13857060>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7e8e139c1b80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 798720,
25
- "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1737482699378465084,
30
- "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAABoAQT2G8pw/RGYdPmdKKb+DEio9MTsRPQAAAAAAAAAAIBs9vm6Rrbys9J44xON3ttmPGj4srrO3AACAPwAAgD8gVj++7NDXPD5tdj3XGQy8qEptvhgmHT0AAIA/AACAP7C4d74+K3E/G3L2vi2TFr8OdYi+Yb2RvQAAAAAAAAAApdSUvj4cmT0dWhc+ixdlvmsHLDxtqfS7AAAAAAAAAAAg84C+DMcpPkkUqj02RIq+Jq4dvaoAfz0AAAAAAAAAADONlD1PU309UerEvqLMKb4K/NG9kt7KvAAAAAAAAAAAWt2LPr1ECj+GaAC+ISYtv6/3tD5YL5q+AAAAAAAAAADWXWi+ZJUZvaNf8rwKeqS9tkSzPiLya74AAAAAAACAP5qvcj37xZo953yovoKJBL4BkcK99U2jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,32 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": 0.6006400000000001,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+iW/BWPtGMAWyUS+GMAXSUR0CPjkfp2U0OdX2UKGgGR0BvWogxJul5aAdL0WgIR0CPjnq+rU9ZdX2UKGgGR0BwhBDWsijdaAdL1WgIR0CPjwH+qBEsdX2UKGgGR0BwWsGyHEdeaAdLzmgIR0CPj7vuPV/ddX2UKGgGR0Bzv+PZIxxlaAdL+GgIR0CPkKNqgyuZdX2UKGgGR0Bd1T1TR6WxaAdN6ANoCEdAj5IBGhEjPnV9lChoBkdAalqXY150KmgHTQYCaAhHQI+SmgFotcx1fZQoaAZHQG4YPAGjbi9oB0vvaAhHQI+UFBa9sad1fZQoaAZHQHBsNEkSmIloB0uraAhHQI+WDsfJV811fZQoaAZHQHFrOAqd6LRoB0vMaAhHQI+W/8IiTt91fZQoaAZHQHDEtKqXF99oB0vDaAhHQI+XmwLVnVZ1fZQoaAZHQHCoqODJ2dNoB0viaAhHQI+Xv8yeqaR1fZQoaAZHQHAiEmICU5doB0vGaAhHQI+YVqzqrzZ1fZQoaAZHQHDHY2fkFOhoB0vXaAhHQI+adyT6i0x1fZQoaAZHQHHJSFXaJyhoB0vpaAhHQI+asQ2/BWR1fZQoaAZHQG4uvDHfdh1oB0vMaAhHQI+bxCv5gw51fZQoaAZHQGM3k+gUUPBoB03oA2gIR0CPnM5imVJMdX2UKGgGR0BwgYmLLpzLaAdL1mgIR0CPniB4lhPTdX2UKGgGR0By3IzXSSeRaAdLx2gIR0CPnmrqdH2AdX2UKGgGR0Bywy0iQkonaAdLyWgIR0CPn7cpLEk0dX2UKGgGR0BzxSe8PFvRaAdNGAFoCEdAj6IJLM9r43V9lChoBkdAcfBuxKQJX2gHTSoBaAhHQI+ik5n13+x1fZQoaAZHQHBVLQ9ic5NoB0veaAhHQI+j96AvtdB1fZQoaAZHQHK/9jLB9CxoB0vvaAhHQI+lzQZ4wAV1fZQoaAZHQETC3PzFuNxoB0tjaAhHQI+mmkSElE91fZQoaAZHQHKYMenyd4FoB00/AWgIR0CPps0Jng5zdX2UKGgGR0ByyyZKFqSHaAdL22gIR0CPptn2ZiNLdX2UKGgGR0Byj7s+mm+CaAdL6WgIR0CPpxDUExIrdX2UKGgGR0ByqSwyIpH7aAdL4mgIR0CPqIDHwPRRdX2UKGgGR0Bya/eenQ6ZaAdL/GgIR0CPrEgzP8htdX2UKGgGR0BwIA45tFa0aAdL2GgIR0CPruxu89OidX2UKGgGR0BxHlB4Uvf1aAdL1mgIR0CPr/5Sm65HdX2UKGgGR0BwIA1UEPlNaAdL02gIR0CPsC7FKkEcdX2UKGgGR0Bvsbj/+85CaAdLx2gIR0CPsX9kSVW0dX2UKGgGR0BxF6R8twrEaAdL/mgIR0CPsbJ7LMcIdX2UKGgGR0Bf0ujua4MGaAdN6ANoCEdAj7QviT+vQnV9lChoBkdAb9UZBsyi22gHS71oCEdAkBMUsrd30XV9lChoBkdAb/w9M9KVZGgHS9NoCEdAkBUTy4FzMnV9lChoBkdAbSZx9XtBwGgHS79oCEdAkBU5w4sEq3V9lChoBkdAcXER7qptJmgHS8RoCEdAkBVCH6/IsHV9lChoBkdAciO3aSLZSWgHS7poCEdAkBW672+PBHV9lChoBkdAcPFR4hUzbmgHTQIBaAhHQJAXk6BAfMh1fZQoaAZHQHCBQJPZZjhoB0vEaAhHQJAX36zmfXh1fZQoaAZHQHKrmZZ0SytoB0v1aAhHQJAYkZBLPD51fZQoaAZHQHGrGv4dp7FoB0u5aAhHQJAZxuaWom51fZQoaAZHQG8SXBYV6/toB0vUaAhHQJAac163RXx1fZQoaAZHQHPjB0+1SfloB0voaAhHQJAazxlQMx51fZQoaAZHQGK957w8W9FoB03oA2gIR0CQG+JNTLntdX2UKGgGR0ByxCE4//vOaAdNAAFoCEdAkBwfBacI7nV9lChoBkdAQjhj+aScLGgHS7RoCEdAkBzzoMa0hXV9lChoBkdAb8K+QlruY2gHS+BoCEdAkB1MX3xnWnV9lChoBkdAckyuVopQUGgHTS0BaAhHQJAev2rXDm91fZQoaAZHQG6WREnb7CVoB0vgaAhHQJAf8xgy/K11fZQoaAZHQHNPeo1k1/FoB00JAWgIR0CQH/udf9gndX2UKGgGR0BxPFbzK9wnaAdLzGgIR0CQIMyGzru6dX2UKGgGR0Bb+Boh6jWTaAdN6ANoCEdAkCITwYtQK3V9lChoBkdAId9rO7g882gHS69oCEdAkCOcTviLl3V9lChoBkdAcWhzAeq7y2gHTQwBaAhHQJAj9ZU1hst1fZQoaAZHQF8txbSqlxhoB03oA2gIR0CQJCxTbWVedX2UKGgGR0BwWdl5GBnSaAdLy2gIR0CQJbnm7rcCdX2UKGgGR0BxXFcB2fTTaAdLvmgIR0CQJkszEaVEdX2UKGgGR0BwBbn6l+EzaAdLvGgIR0CQJ2mHxjJ/dX2UKGgGR0BvSl2/zreJaAdNugFoCEdAkCmaa9bosHV9lChoBkdAb3IjkdV/+mgHS+FoCEdAkCr+z6ab4XV9lChoBkdAcuQBw++ueWgHS/NoCEdAkCtBoAXEZXV9lChoBkdAcdLI6bONYWgHS9RoCEdAkCwacNH6M3V9lChoBkdAby3gsK9f1GgHS+doCEdAkC0SN83Mp3V9lChoBkdAcqX1UVBUrGgHS91oCEdAkC9i7sfJWHV9lChoBkdAcCPafzz3AWgHS7VoCEdAkC+5KSPluHV9lChoBkdAa1FtKIznBGgHTXoBaAhHQJAx1OEdvKl1fZQoaAZHQHDoRCx/ustoB0vfaAhHQJAx2tW+49Z1fZQoaAZHQHEpPmHP/rBoB0vYaAhHQJAyrUqhDgJ1fZQoaAZHQHKCf2GqPwNoB0vSaAhHQJA06S3b2151fZQoaAZHQGFRYKQaJhxoB03oA2gIR0CQNQ5hScbzdX2UKGgGR0BxAn4UN8VpaAdL42gIR0CQNaEKE385dX2UKGgGR0BlCp7Z39rHaAdN6ANoCEdAkDZWSdOIqXV9lChoBkdAb/UqEvkBCGgHS8BoCEdAkDaeD3/PxHV9lChoBkdAcSQ/+85CGGgHTQIBaAhHQJA4L2Bas6t1fZQoaAZHQHFxiwKSgXdoB0vzaAhHQJA4jb212JV1fZQoaAZHQHFBerZJ04loB0u0aAhHQJA5RNwiqyZ1fZQoaAZHQG96/lp48lpoB0vEaAhHQJA5gjC53C91fZQoaAZHQG2pzn7pFCtoB0u+aAhHQJA6DSH/Lkl1fZQoaAZHQFwQzYmLLp1oB03oA2gIR0CQOpqUNayKdX2UKGgGR0ByrG8Gs3hoaAdLzmgIR0CQOwYAbQ1KdX2UKGgGR0BzvA4NqgyuaAdL5mgIR0CQO7W4EwFldX2UKGgGR0BysbzwtrbhaAdLxmgIR0CQPG73PAwgdX2UKGgGR0BfvB0IToMbaAdN6ANoCEdAkD0cf/3nIXV9lChoBkdAcSJQT238XWgHS8poCEdAkD187hegMHV9lChoBkdAcgn9bHIZImgHS/toCEdAkD3azu4PPXV9lChoBkdAcIahkAggYGgHS6RoCEdAkD3lnh86WHV9lChoBkdAbTcqAjIJaGgHS+5oCEdAkD5iLqD9O3V9lChoBkdAcOQNkOI682gHS8NoCEdAkD7jrqt5lnV9lChoBkdAcayyWiUPhGgHS8BoCEdAkEFp5mh/RXV9lChoBkdAcTU4jrzGxWgHS+poCEdAkEH2SyMUAXV9lChoBkdAcuDo9cKPXGgHTQ4BaAhHQJBCGtjkMkR1fZQoaAZHQGN1/ZM+NcZoB03oA2gIR0CQQi6AOJ+EdX2UKGgGR0BxIxAdGRV7aAdL0WgIR0CQQkh+fAbidX2UKGgGR0Bwx8M5OrQxaAdNFQFoCEdAkEOTTrmhd3V9lChoBkdAcIdUiY9gW2gHS/poCEdAkEQStA9mpXV9lChoBkdAcYE4e9zwMGgHTSIBaAhHQJBETGQ0XP91ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 382,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -69,7 +84,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
@@ -77,23 +92,8 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 10,
80
- "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
- "vf_coef": 0.5,
85
- "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 10,
88
- "clip_range": {
89
- ":type:": "<class 'function'>",
90
- ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
- },
92
- "clip_range_vf": null,
93
- "normalize_advantage": true,
94
- "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb66892a700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb66892a7a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb66892a840>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb66892a8e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eb66892a980>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eb66892aa20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb66892aac0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb66892ab60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eb66892ac00>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb66892aca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb66892ad40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb66892ade0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7eb66bf149c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 295710,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1737536642194227625,
30
+ "learning_rate": 0.0,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANNgAr64JYs8ohs9PuaDnL2uI2I9GxFUPAAAAAAAAAAAYOg3vpSDvrwc74865HT9OAATJj4ZTMK5AACAPwAAgD8A9wk+/NEdPb0eAb6Tc1C+xv2CuyM1d70AAAAAAAAAAGbc2rxS9aI/CD13vgkcK7+pJbu88rPzvQAAAAAAAAAAulUfvtygFbxFwm+8TXGjuo4Dej3h4oc7AACAPwAAgD8zfqO9uEDHOn+GjTxKU748VJUfvJg1ejwAAAAAAACAP3MUAr6f56g8VVaWPUuJS74hyyo9fecbPQAAAAAAAAAAamxxvq/bcD2F1kM+EoHpvULR8DuYgYs8AAAAAAAAAACNzCO+sCKQPul7Ar0WZ8e+JZigvfjXKbwAAAAAAAAAAAoef75cDzU7MF8nteCQyzAsc628JoY5NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.71328,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3BNdqtYCMAWyUS+mMAXSUR0B2n1xMnJDFdX2UKGgGR0BzFbcynDR/aAdL6WgIR0B2pb41xbSrdX2UKGgGR0BxLSgi/wiJaAdLvGgIR0B3k/9R77bddX2UKGgGR0Byxbuw5eZ5aAdL0GgIR0B3lW4H5aePdX2UKGgGR0BxRV2ll9SdaAdL0WgIR0B3l6c8TzundX2UKGgGR0BwZdlQMx46aAdLu2gIR0B3mUnw5NoKdX2UKGgGR0BxwPH3lCC0aAdLyGgIR0B3mpbor4FidX2UKGgGR0BzH/SlWOp9aAdNLgFoCEdAd5tzyjHn2nV9lChoBkdAclOGViWmg2gHS+JoCEdAd5yUnG828HV9lChoBkdAcZHXqqwQlWgHTUMBaAhHQHeiqlYU34t1fZQoaAZHQHPy/S6UaAFoB0vGaAhHQHejZqASWZ91fZQoaAZHQHFWa+vhZQpoB0voaAhHQHekB/mT1TR1fZQoaAZHQG5BCSaEzwdoB0vTaAhHQHelw5R0lqt1fZQoaAZHQHFWjY/Vy3loB0u/aAhHQHen0rwvxpd1fZQoaAZHQHN1vFNtZV5oB0voaAhHQHepVyNn5BV1fZQoaAZHQHEL5z5oGpxoB0u4aAhHQHepVQVKwpx1fZQoaAZHQHJPfV3EAHVoB0vYaAhHQHeqss+V1Ol1fZQoaAZHQFbqeRPoFFFoB03oA2gIR0B3sNTOxB3SdX2UKGgGR0BxyYj2SMcZaAdL22gIR0B3s3epGWledX2UKGgGR0BwHFxtHhCMaAdLvWgIR0B3s6NZNfw7dX2UKGgGR0BwBJovi97GaAdL5WgIR0B3s7S9du50dX2UKGgGR0Bycd4gRsdlaAdNRQFoCEdAd7Sn4wh4dXV9lChoBkdAc0Ygk1Mue2gHS+5oCEdAd7Uobn5i3HV9lChoBkdAb3rR/mT1TWgHS+RoCEdAd7k8NQTEi3V9lChoBkdAcL7S/TLGJmgHS/xoCEdAd7rwL3K0U3V9lChoBkdAcv0n2IwdsGgHTUEBaAhHQHe+RK15Sm91fZQoaAZHQHFHy0OVgQZoB0u1aAhHQHe/pTAFgUl1fZQoaAZHQHIZRkI5YHRoB0uyaAhHQHfAxNATqSp1fZQoaAZHQG+5vqs2ehBoB0vCaAhHQHfA0oWpIc11fZQoaAZHQHKvp6D5CWxoB0vwaAhHQHfBXGbTc7B1fZQoaAZHQHFufdEb5uZoB0vOaAhHQHfDRkVeruJ1fZQoaAZHQHLJEmD15B1oB0u8aAhHQHfIdECvHLl1fZQoaAZHQHE4nmzSkTJoB0vdaAhHQHfJK+rU9ZB1fZQoaAZHQHDBHlr/KhdoB0vUaAhHQHfOMMAmzB11fZQoaAZHQHNPl1KXfIloB0vFaAhHQHfP1rqMWGh1fZQoaAZHQHBDjX8O09hoB0viaAhHQHfTIzzmOlx1fZQoaAZHQHD0LcO9WZJoB00XAWgIR0B316fFrEcbdX2UKGgGR0Bugqhg3LmqaAdNBgFoCEdAd9mHdGiHqXV9lChoBkdAbZrXCCSRsGgHS89oCEdAd9t72L5yl3V9lChoBkdAb7LLteD3/WgHS6xoCEdAd9+Pu5SWJXV9lChoBkdAcU8Z6lchT2gHS8poCEdAd+CTIeYD1XV9lChoBkdAct7x8lXzUmgHS9FoCEdAd+2Xko4MnnV9lChoBkdAcU/YyfthNWgHTQcBaAhHQHfxWJSBK+V1fZQoaAZHQHFAqIi1RchoB0vDaAhHQHf01T3qRlp1fZQoaAZHQHD8xU3n6mBoB00LAWgIR0B39ni6xxDLdX2UKGgGR0BxWzVUdaMaaAdL5WgIR0B392Phhpg1dX2UKGgGR0Bd7R91EE1VaAdN6ANoCEdAeAOsIVuaW3V9lChoBkdAci96cRUWEmgHS7doCEdAeARjc2zfJnV9lChoBkdAbkv7vXsgMmgHTfMBaAhHQHgJ13yI55t1fZQoaAZHQHBhgaNuLrJoB0vOaAhHQHgPv6CUX551fZQoaAZHQG6I4i5d4V1oB0vEaAhHQHgQV54W1tx1fZQoaAZHQHJzC4SYgJVoB0v3aAhHQHgRBBNVR1p1fZQoaAZHQFyqFpwjt5VoB03oA2gIR0B4EvLJSzgNdX2UKGgGR0BwShE9dNWVaAdLxWgIR0B4G5WYF7ladX2UKGgGR0BwUb1wo9cKaAdLz2gIR0B4HTzvqkdndX2UKGgGR0BxxZ7CzkZKaAdNOgFoCEdAeB7umaYu03V9lChoBkdAbwOdyT6i02gHS9NoCEdAeCJ9pRGc4HV9lChoBkdAY78lPacqfGgHTegDaAhHQHgmCSJTER91fZQoaAZHQHFPwtSQ5m1oB0vSaAhHQHgm4zJp35h1fZQoaAZHQHDkz4QBgeBoB0vyaAhHQHgrDp5eJHl1fZQoaAZHQHIGbjHXEqFoB0vQaAhHQHgufzjFQ2x1fZQoaAZHQHArmki2UjdoB01FAWgIR0B4L8G8mKIjdX2UKGgGR0BftXvttyggaAdN6ANoCEdAeC/EcKgIyHV9lChoBkdAcUthmoR7JGgHS9toCEdAeDPLh73PA3V9lChoBkdAc1KIJJGvwGgHS9doCEdAeDa3eenQ6nV9lChoBkdAcGVWAf+0gWgHS9poCEdAeDfxtYSxq3V9lChoBkdAcX2QAuIykGgHS8doCEdAeD6frKNhmXV9lChoBkdAcXLtxdY4hmgHS/xoCEdAeD974BV+7XV9lChoBkdAczXNrTH80mgHS+JoCEdAeEJ9mHxjKHV9lChoBkdAcfiX/YJ3PmgHTQYBaAhHQHhGVAqur6t1fZQoaAZHQHIyFv/BFd9oB0vOaAhHQHk204//vOR1fZQoaAZHQHI19Aood+5oB00xAWgIR0B5O3F6zE75dX2UKGgGR0BxEevq1PWQaAdLwmgIR0B5PdyU9pyqdX2UKGgGR0Buz9/6O5rhaAdL0GgIR0B5PkaNuLrHdX2UKGgGR0Bxk6SV4X41aAdNNgFoCEdAeT9y4FzMinV9lChoBkdAb8cxwhnrZGgHS85oCEdAeUG889wFT3V9lChoBkdAbu0bQTmGNGgHS69oCEdAeUZv1UVBU3V9lChoBkdActZiSq2jPGgHS9RoCEdAeU6FnqVyFXV9lChoBkdAcO722G7Bf2gHTT4BaAhHQHlPGP5pJwt1fZQoaAZHQHB8UR8MNMJoB0vUaAhHQHlSwIyCWeJ1fZQoaAZHQHCfmPYFqztoB0vwaAhHQHlUWReTmnx1fZQoaAZHQHEcfMfRu0loB00hAWgIR0B5WLZwn6VMdX2UKGgGR0Bwla/7BO58aAdL+2gIR0B5WVRgqmTDdX2UKGgGR0BhfIKhL5ARaAdN6ANoCEdAeVlpztCzC3V9lChoBkdAbzDT72tdRmgHS9xoCEdAeVtMnZ00WXV9lChoBkdAYbSfthNM5GgHTegDaAhHQHliI1k1/Dt1fZQoaAZHQG4nuDJ2dNFoB0vjaAhHQHli1tO2y9p1fZQoaAZHQF1bRIz3yqdoB03oA2gIR0B5YzNTtLL7dX2UKGgGR0BxJcHryDqXaAdLw2gIR0B5ZJYA80UHdX2UKGgGR0Bxknor4FibaAdL2mgIR0B5ZQpVjqfOdX2UKGgGR0BxWtzEJjUeaAdL3GgIR0B5aTLSuyNXdX2UKGgGR0Bx7CGzru6VaAdL4GgIR0B5a69AX2ugdX2UKGgGR0Bs7m0svqTsaAdLv2gIR0B5b9QwblzVdX2UKGgGR0BwPHkMkQf7aAdNNQFoCEdAeXCxwQ176nV9lChoBkdAcCJgjQiRn2gHS8BoCEdAeXDKnvUjLXV9lChoBkdAcj5yLQ5WBGgHS+xoCEdAeXSl2/zreXV9lChoBkdAbQ0DUVi4KGgHTWkBaAhHQHl04JqqOtJ1fZQoaAZHQHFnXCfpUxVoB0vZaAhHQHl0247Rv3t1fZQoaAZHQHNTAymALApoB0vyaAhHQHl2/e+Eh7p1fZQoaAZHQHL411SwW31oB0vLaAhHQHl/yHARChN1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 522,
55
+ "n_steps": 2048,
56
+ "gamma": 0.99,
57
+ "gae_lambda": 0.95,
58
+ "ent_coef": 0.0,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 10,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwePGlweXRob24taW5wdXQtOS1hZWIzNzViNjY4Mzk+lIwIPGxhbWJkYT6UjAg8bGFtYmRhPpRLBEMGgACgQ4AAlEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGH2UfZQoaBWMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwIPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgWjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
84
  },
85
  "action_space": {
86
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
  "n": "4",
89
  "start": "0",
90
  "_shape": [],
 
92
  "_np_random": null
93
  },
94
  "n_envs": 10,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63f9aad6f2e185df68c8efcef5e494723a400f7cc3c4539f4d9536ae3d5347a9
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb294a2c47879142f1a8f781b282ac22e43343144fe2dcb437bf42e000d74ed
3
+ size 88490
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 244.7072545, "std_reward": 45.50712764484261, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-21T18:31:19.059971"}
 
1
+ {"mean_reward": 245.094811, "std_reward": 49.64531594897125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-22T09:12:33.714496"}