yuanzhoulvpi
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: image-text-to-text
|
7 |
+
---
|
8 |
+
|
9 |
+
# 从0到1训练一个定制版的llava模型
|
10 |
+
1. 基于openai/clip-vit-large-patch14-336 和Qwen1.5-4B-Chat模型,构建一个llava模型
|
11 |
+
2. 使用数据`https://huggingface.co/datasets/CaptionEmporium/TextOCR-GPT4o` 、`https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K` 、`https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o`
|
12 |
+
3. 训练方式是deepspeed-zero2、lora进行微调。
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# 关联的github
|
17 |
+
1. [https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# 关联的b站学习视频
|
22 |
+
|
23 |
+
1. 待填充
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# 推理代码
|
28 |
+
|
29 |
+
|
30 |
+
```python
|
31 |
+
|
32 |
+
from transformers import LlavaForConditionalGeneration, AutoProcessor
|
33 |
+
import torch
|
34 |
+
from PIL import Image
|
35 |
+
```
|
36 |
+
|
37 |
+
```python
|
38 |
+
|
39 |
+
raw_model_name_or_path = "yuanzhoulvpi/llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336-V2"
|
40 |
+
model = LlavaForConditionalGeneration.from_pretrained(raw_model_name_or_path,device_map="cuda:0", torch_dtype=torch.bfloat16)
|
41 |
+
processor = AutoProcessor.from_pretrained(raw_model_name_or_path)
|
42 |
+
model.eval()
|
43 |
+
print('ok')
|
44 |
+
```
|
45 |
+
|
46 |
+
```python
|
47 |
+
testdata = (
|
48 |
+
'<image>\nRelay a brief, clear account of the picture shown.', # 提问
|
49 |
+
'large kitchen island with an overhang and dining space next to it', # 真实答案
|
50 |
+
'data/liuhaotian/LLaVA-CC3M-Pretrain-595K/images_dl/GCC_train_001899387.jpg' # 图片路径
|
51 |
+
)
|
52 |
+
|
53 |
+
```
|
54 |
+
|
55 |
+
|
56 |
+
```python
|
57 |
+
def build_model_input(model, processor, testdata:tuple):
|
58 |
+
messages = [
|
59 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
60 |
+
{"role": "user", "content": testdata[0]},
|
61 |
+
]
|
62 |
+
prompt = processor.tokenizer.apply_chat_template(
|
63 |
+
messages, tokenize=False, add_generation_prompt=True
|
64 |
+
)
|
65 |
+
# print(prompt)
|
66 |
+
# print("*"*20)
|
67 |
+
image = Image.open(testdata[2])
|
68 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
69 |
+
|
70 |
+
for tk in inputs.keys():
|
71 |
+
inputs[tk] = inputs[tk].to(model.device)
|
72 |
+
generate_ids = model.generate(**inputs, max_new_tokens=20)
|
73 |
+
|
74 |
+
generate_ids = [
|
75 |
+
oid[len(iids):] for oid, iids in zip(generate_ids, inputs.input_ids)
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
gen_text = processor.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
81 |
+
return gen_text
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
```
|
86 |
+
|
87 |
+
```python
|
88 |
+
build_model_input(model, processor, testdata)
|
89 |
+
|
90 |
+
# 'the kitchen is a bright yellow with a glass top island and a large window that looks out to the'
|
91 |
+
```
|
92 |
+
|