--- license: apache-2.0 language: - zh - en pipeline_tag: image-text-to-text --- ## cite this model ```bash @misc {yuanz_2024, author = { {yuanz} }, title = { llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336-V2 (Revision caa1c8f) }, year = 2024, url = { https://huggingface.co/yuanzhoulvpi/llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336-V2 }, doi = { 10.57967/hf/3147 }, publisher = { Hugging Face } } ``` # 从0到1训练一个定制版的llava模型 1. 基于openai/clip-vit-large-patch14-336 和Qwen1.5-4B-Chat模型,构建一个llava模型 2. 使用数据`https://huggingface.co/datasets/CaptionEmporium/TextOCR-GPT4o` 、`https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K` 、`https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o` 3. 训练方式是deepspeed-zero2、lora进行微调。 # 关联的github 1. [https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava) # 关联的b站学习视频 1. 待填充 # 推理代码 ```python from transformers import LlavaForConditionalGeneration, AutoProcessor import torch from PIL import Image ``` ```python raw_model_name_or_path = "yuanzhoulvpi/llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336-V2" model = LlavaForConditionalGeneration.from_pretrained(raw_model_name_or_path,device_map="cuda:0", torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(raw_model_name_or_path) model.eval() print('ok') ``` ```python testdata = ( '\nRelay a brief, clear account of the picture shown.', # 提问 'large kitchen island with an overhang and dining space next to it', # 真实答案 'data/liuhaotian/LLaVA-CC3M-Pretrain-595K/images_dl/GCC_train_001899387.jpg' # 图片路径 ) ``` ```python def build_model_input(model, processor, testdata:tuple): messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": testdata[0]}, ] prompt = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # print(prompt) # print("*"*20) image = Image.open(testdata[2]) inputs = processor(text=prompt, images=image, return_tensors="pt") for tk in inputs.keys(): inputs[tk] = inputs[tk].to(model.device) generate_ids = model.generate(**inputs, max_new_tokens=20) generate_ids = [ oid[len(iids):] for oid, iids in zip(generate_ids, inputs.input_ids) ] gen_text = processor.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] return gen_text ``` ```python build_model_input(model, processor, testdata) # 'the kitchen is a bright yellow with a glass top island and a large window that looks out to the' ```