---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:60
- loss:CosineSimilarityLoss
widget:
- source_sentence: '#1# CLCLT00236B - VM not ready | Total Site IDs = 1|Market Affected: CLCLT00236B
Reported by: Health check
Impact: UE''s roam
Full Problem Description: CLCLT00236A - VM not ready
External Ticket: N/A
Bridge: https://meet.google.com/oab-hmxd-mqb
What groups are engaged: VMware
Next Action: Assigned the ticket to VMware'
sentences:
- Precision Time Protocol (PTP) unlocked
- Samsung DU Nodes not healthy
- VMware VM issue
- source_sentence: '#1# - Nodes Not Healthy, Vendor DU pods count is same as 6 |
Total Site IDs = 1|Reported by & Contact: Vendor Hypercare Report
Impact: UE''s will roam
What groups are engaged: NOC
Full issue description: Nodes Not Healthy, Vendor DU pods count is not 6'
sentences:
- Site Sensor temperature alert
- PRACH zero
- Vendor DU Pods not count not 6
- source_sentence: ' - PTP Unlocked
Impact: UE''s will roam
What groups are engaged: NOCoE
Full issue description: -PTP Unlocked'
sentences:
- DU Health reported PTP unlocked
- DU PTP unlocked
- Physical Random access channel value is reported 0
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8503399836889165
name: Pearson Cosine
- type: spearman_cosine
value: 0.8646819693607537
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8610822762797875
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8632509605462457
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8627648815882912
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8646819693607537
name: Spearman Euclidean
- type: pearson_dot
value: 0.8503399881242814
name: Pearson Dot
- type: spearman_dot
value: 0.8646819693607537
name: Spearman Dot
- type: pearson_max
value: 0.8627648815882912
name: Pearson Max
- type: spearman_max
value: 0.8646819693607537
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
# Run inference
sentences = [
" - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam What groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
'DU Health reported PTP unlocked',
'DU PTP unlocked',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8503 |
| **spearman_cosine** | **0.8647** |
| pearson_manhattan | 0.8611 |
| spearman_manhattan | 0.8633 |
| pearson_euclidean | 0.8628 |
| spearman_euclidean | 0.8647 |
| pearson_dot | 0.8503 |
| spearman_dot | 0.8647 |
| pearson_max | 0.8628 |
| spearman_max | 0.8647 |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 60 training samples
* Columns: description
, search_key
, and label
* Approximate statistics based on the first 60 samples:
| | description | search_key | label |
|:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details |
UE can not camp on network (drive test)|RU Healthcheck is okay
| Network drive test shows UE cannot attach
| 0.98
|
| Samsung Alert : UADPF: 12345 (AAA) - service-off at /0725C-NR
| UADPF Service off issue
| 0.95
|
| Samsung Alert : UADPF: 12345 (AAA) - - service-off at 0725C-NR
| Vendor UADPF service off issue
| 0.94
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 12 evaluation samples
* Columns: description
, search_key
, and label
* Approximate statistics based on the first 12 samples:
| | description | search_key | label |
|:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | Temperature Sensor Fault ALERT | | with Temperature: Max cell ST1 29.4 | Max cell ST2 | Min cell ST1 -3276.8 | Min cell ST2
Temperature: 29
Sitename :TESTSITE
| Site Sensor temperature alert
| 0.96
|
| - PTP Unlocked|Reported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP Unlocked
| Precision Time Protocol (PTP) unlocked
| 0.94
|
| - PTP Unlocked|Reported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP Unlocked
| DU PTP unlocked
| 0.96
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters