Upload 4 files
Browse files- README.md +57 -0
- entity_summary.pth +3 -0
- entity_summary.py +47 -0
- entitysummarydemo.png +0 -0
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is a state for rwkv6_7b_v2.1 that generates a summary about entities and relations between them
|
2 |
+
|
3 |
+
* The input is solely the context that you want this model to analyze
|
4 |
+
* The output are domain, expert role in this domain and specific tasks that this export can do in a jsonl format.
|
5 |
+
|
6 |
+
# Please refer to the following demo as test code:
|
7 |
+
```python
|
8 |
+
from rwkv.model import RWKV
|
9 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# download models: https://huggingface.co/BlinkDL
|
13 |
+
model = RWKV(model='/home/rwkv/Peter/model/base/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16')
|
14 |
+
print(model.args)
|
15 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV
|
16 |
+
# use pipeline = PIPELINE(model, "rwkv_vocab_v20230424") for rwkv "world" models
|
17 |
+
states_file = '/home/rwkv/Peter/rwkv_graphrag/agents/entity_summary/entity_summary.pth'
|
18 |
+
states = torch.load(states_file)
|
19 |
+
states_value = []
|
20 |
+
device = 'cuda'
|
21 |
+
n_head = model.args.n_head
|
22 |
+
head_size = model.args.n_embd//model.args.n_head
|
23 |
+
for i in range(model.args.n_layer):
|
24 |
+
key = f'blocks.{i}.att.time_state'
|
25 |
+
value = states[key]
|
26 |
+
prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
27 |
+
prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2)
|
28 |
+
prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
29 |
+
states_value.append(prev_x)
|
30 |
+
states_value.append(prev_states)
|
31 |
+
states_value.append(prev_ffn)
|
32 |
+
|
33 |
+
cat_char = '🐱'
|
34 |
+
bot_char = '🤖'
|
35 |
+
instruction ='请阅读iput中的entities和descritions,围绕entity和descrition写一个简单的200字介绍,介绍需要包括所的entity和他们之间的关系.最终内容不能超过200字'
|
36 |
+
input_text = '"entities": ["汉语", "语义偏移", "构式语法", "评价性语境", "词汇意义"], "descriptions": ["汉语是中国的主要语言,具有丰富的语义结构和复杂的语法体系。", "语义偏移是指在特定语境下,词语的意义发生的变化或偏离。", "构式语法研究的是句子结构的模式及其功能,是语言学的一个分支。", "评价性语境指的是包含情感色彩或评价性质的语言环境,影响着语言表达的意义。", "词汇意义指的是单词在特定语境下的具体含义,可以因语境而变化。"]'
|
37 |
+
ctx = f'{cat_char}:{instruction}\n{input_text}\n{bot_char}:'
|
38 |
+
print(ctx)
|
39 |
+
|
40 |
+
def my_print(s):
|
41 |
+
print(s, end='', flush=True)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
args = PIPELINE_ARGS(temperature = 1.3, top_p = 0.5, top_k = 0, # top_k = 0 then ignore
|
46 |
+
alpha_frequency = 0.7,
|
47 |
+
alpha_presence = 0.5,
|
48 |
+
alpha_decay = 0.996, # gradually decay the penalty
|
49 |
+
token_ban = [0], # ban the generation of some tokens
|
50 |
+
token_stop = [bot_char], # stop generation whenever you see any token here
|
51 |
+
chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)
|
52 |
+
|
53 |
+
pipeline.generate(ctx, token_count=200, args=args, callback=my_print,state=states_value)
|
54 |
+
print('\n')
|
55 |
+
```
|
56 |
+
# The final printed input and output:
|
57 |
+
![](entitysummarydemo.png)
|
entity_summary.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e66ffcc5a70a10ba1bc08988afd4dbfd1d9085564821ce294264df0e683f57a
|
3 |
+
size 16781463
|
entity_summary.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from rwkv.model import RWKV
|
2 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# download models: https://huggingface.co/BlinkDL
|
6 |
+
model = RWKV(model='/home/rwkv/Peter/model/base/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16')
|
7 |
+
print(model.args)
|
8 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV
|
9 |
+
# use pipeline = PIPELINE(model, "rwkv_vocab_v20230424") for rwkv "world" models
|
10 |
+
states_file = '/home/rwkv/Peter/rwkv_graphrag/agents/entity_summary/entity_summary.pth'
|
11 |
+
states = torch.load(states_file)
|
12 |
+
states_value = []
|
13 |
+
device = 'cuda'
|
14 |
+
n_head = model.args.n_head
|
15 |
+
head_size = model.args.n_embd//model.args.n_head
|
16 |
+
for i in range(model.args.n_layer):
|
17 |
+
key = f'blocks.{i}.att.time_state'
|
18 |
+
value = states[key]
|
19 |
+
prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
20 |
+
prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2)
|
21 |
+
prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
22 |
+
states_value.append(prev_x)
|
23 |
+
states_value.append(prev_states)
|
24 |
+
states_value.append(prev_ffn)
|
25 |
+
|
26 |
+
cat_char = '🐱'
|
27 |
+
bot_char = '🤖'
|
28 |
+
instruction ='请阅读iput中的entities和descritions,围绕entity和descrition写一个简单的200字介绍,介绍需要包括所的entity和他们之间的关系.最终内容不能超过200字'
|
29 |
+
input_text = '"entities": ["汉语", "语义偏移", "构式语法", "评价性语境", "词汇意义"], "descriptions": ["汉语是中国的主要语言,具有丰富的语义结构和复杂的语法体系。", "语义偏移是指在特定语境下,词语的意义发生的变化或偏离。", "构式语法研究的是句子结构的模式及其功能,是语言学的一个分支。", "评价性语境指的是包含情感色彩或评价性质的语言环境,影响着语言表达的意义。", "词汇意义指的是单词在特定语境下的具体含义,可以因语境而变化。"]'
|
30 |
+
ctx = f'{cat_char}:{instruction}\n{input_text}\n{bot_char}:'
|
31 |
+
print(ctx)
|
32 |
+
|
33 |
+
def my_print(s):
|
34 |
+
print(s, end='', flush=True)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
args = PIPELINE_ARGS(temperature = 1.3, top_p = 0.5, top_k = 0, # top_k = 0 then ignore
|
39 |
+
alpha_frequency = 0.7,
|
40 |
+
alpha_presence = 0.5,
|
41 |
+
alpha_decay = 0.996, # gradually decay the penalty
|
42 |
+
token_ban = [0], # ban the generation of some tokens
|
43 |
+
token_stop = [bot_char], # stop generation whenever you see any token here
|
44 |
+
chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)
|
45 |
+
|
46 |
+
pipeline.generate(ctx, token_count=200, args=args, callback=my_print,state=states_value)
|
47 |
+
print('\n')
|
entitysummarydemo.png
ADDED