|
from rwkv.model import RWKV |
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS |
|
import torch |
|
|
|
|
|
model = RWKV(model='/home/rwkv/Peter/model/base/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16') |
|
print(model.args) |
|
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") |
|
|
|
states_file = '/home/rwkv/Peter/rwkv_graphrag/agents/entity_type_extraction/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth.pth' |
|
states = torch.load(states_file) |
|
states_value = [] |
|
device = 'cuda' |
|
n_head = model.args.n_head |
|
head_size = model.args.n_embd//model.args.n_head |
|
for i in range(model.args.n_layer): |
|
key = f'blocks.{i}.att.time_state' |
|
value = states[key] |
|
prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) |
|
prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2) |
|
prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) |
|
states_value.append(prev_x) |
|
states_value.append(prev_states) |
|
states_value.append(prev_ffn) |
|
|
|
cat_char = '🐱' |
|
bot_char = '🤖' |
|
instruction ='根据input中的领域和任务,协助用户识别input文本中存在的实体类型。 实体类型必须与用户任务相关。 避免使用诸如“其他”或“未知”的通用实体类型。 非常重要的是:不要生成冗余或重叠的实体类型。用JSON格式输出。' |
|
input_text = '{"领域": "文学与神话", "专家": "文学史学者/神话学家", "任务": ["分析《石头记》的历史背景和影响", "研究《红楼梦》与《金陵十二钗》之间的关系", "探讨东鲁孔梅溪对《石头记》的改编过程", "解析吴玉峰在《红楼梦》中的角色和贡献", "评估曹雪芹在《悼红轩中披阅十五间》中的写作技巧"]}' |
|
ctx = f'{cat_char}:{instruction}\n{input_text}\n{bot_char}:' |
|
print(ctx) |
|
|
|
def my_print(s): |
|
print(s, end='', flush=True) |
|
|
|
|
|
|
|
args = PIPELINE_ARGS(temperature = 1, top_p = 0.2, top_k = 0, |
|
alpha_frequency = 0.5, |
|
alpha_presence = 0.5, |
|
alpha_decay = 0.998, |
|
token_ban = [0], |
|
token_stop = [0,1], |
|
chunk_len = 256) |
|
|
|
pipeline.generate(ctx, token_count=200, args=args, callback=my_print,state=states_value) |
|
print('\n') |