--- language: - zh --- This checkpoint is a states tuning file from RWKV-6-7B. Please download the base model from https://huggingface.co/BlinkDL/rwkv-6-world/tree/main . It will give a judgement about the type of the sentence. Usage: - update the latest rwkv package: pip install --upgrade rwkv - Download the base model and the states file. You may download the states from the epoch_2 directory. - Following the codes: * Loading the model and states ```python from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS import torch # download models: https://huggingface.co/BlinkDL model = RWKV(model='/media/yueyulin/KINGSTON/models/rwkv6/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16') print(model.args) pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV # use pipeline = PIPELINE(model, "rwkv_vocab_v20230424") for rwkv "world" models states_file = '/media/yueyulin/data_4t/models/states_tuning/custom_trainer/epoch_2/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth.pth' states = torch.load(states_file) states_value = [] device = 'cuda' n_head = model.args.n_head head_size = model.args.n_embd//model.args.n_head for i in range(model.args.n_layer): key = f'blocks.{i}.att.time_state' value = states[key] prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2) prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) states_value.append(prev_x) states_value.append(prev_states) states_value.append(prev_ffn) ``` The typed schema is : ```python schema = ['事件', '自然科学', '建筑结构', '地理地区', '组织', '医学', '天文对象', '人造物件', '运输', '作品', '生物', '人物'] ``` Try the following case: ```python cat_char = '🐱' bot_char = '🤖' instruction ='你是一个图谱实体知识结构化专家。请从input中抽取出符合schema定义的实体实例和其属性,不存在的属性不输出,属性存在多值就返回列表。请按照JSON字符串的格式回答。' schema = schemas['人物'] input_text = "个人简介姓名:拉塞·维比 所属球队:布伦特福德 国籍:丹麦、法国、荷兰、法属圭亚那 出生日期:1987-02-22 身高:181cm 体重:73kg 场上位置:前锋 球衣号码:21 丹麦射手拉塞-维比,获得了2014赛季瑞超联赛金靴" input_text = {'input': input_text, 'schema': schema} input_text = json.dumps(input_text).decode('UTF-8') ctx = f'{cat_char}:{instruction}\n{input_text}\n{bot_char}:' print(ctx) def my_print(s): print(s, end='', flush=True) # For alpha_frequency and alpha_presence, see "Frequency and presence penalties": # https://platform.openai.com/docs/api-reference/parameter-details args = PIPELINE_ARGS(temperature = 1.0, top_p = 0, top_k = 0, # top_k = 0 then ignore alpha_frequency = 0.25, alpha_presence = 0.25, alpha_decay = 0.996, # gradually decay the penalty token_ban = [0], # ban the generation of some tokens token_stop = [0,1], # stop generation whenever you see any token here chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower) pipeline.generate(ctx, token_count=200, args=args, callback=my_print,state=states_value) print('\n') ``` The output should look like: ```bash {"result":人物} ```