from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS import torch # download models: https://huggingface.co/BlinkDL model = RWKV(model='/home/rwkv/Peter/model/base/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16') print(model.args) pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV # use pipeline = PIPELINE(model, "rwkv_vocab_v20230424") for rwkv "world" models states_file = '/home/rwkv/Peter/model/state/triples/3/rwkv-0.pth' states = torch.load(states_file) states_value = [] device = 'cuda' n_head = model.args.n_head head_size = model.args.n_embd//model.args.n_head for i in range(model.args.n_layer): key = f'blocks.{i}.att.time_state' value = states[key] prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2) prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16) states_value.append(prev_x) states_value.append(prev_states) states_value.append(prev_ffn) instruction ='根据input中的input和entity_types,帮助用户找到文本中每种entity_types的实体,标明实体类型并且简单描述。然后给找到实体之间的关系,并且描述这段关系以及对关系强度打分。 避免使用诸如“其他”或“未知”的通用实体类型。 非常重要的是:不要生成冗余或重叠的实体类型和关系。用JSON格式输出。' input_text = '{\"input\": \"有个空空道人访道求仙,从大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编述历历,《石头记》是也。空空道人将《石头记》抄录下来,改名为《情僧录》。至吴玉峰题曰《红楼梦》。东鲁孔梅溪则题曰《风月宝鉴》。后因曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回,则题曰《金陵十二钗》。姑苏乡宦甄士隐梦见一僧一道携无缘补天之石(通灵宝玉)下凡历练,又讲绛珠仙子为报神瑛侍者浇灌之恩追随神瑛侍者下世为人,以泪报恩。梦醒后,抱女儿英莲去看“过会”[2]。甄士隐结交并接济了寄居于隔壁葫芦庙内的胡州人氏贾化(号雨村)。某日,贾雨村造访甄士隐,无意中遇见甄家丫鬟娇杏,以为娇杏对其有意。中秋时节,甄士隐于家中宴请贾雨村,得知贾雨村的抱负后,赠银送衣以作贾雨村上京赴考之盘缠,第二天,贾雨村不辞而别便上路赴考。第二年元宵佳节当晚,甄家仆人霍启在看社火花灯时,不慎丢失了甄士隐唯一的女儿英莲。三月十五日,葫芦庙失火祸及甄家,落魄的甄士隐带家人寄居于如州岳丈封肃家中,后遇一僧一道,悟出《好了歌》真谛,随僧道而去。\"}, {\"entity_types\": ["文学与神话", "历史背景", "影响分析", "改编过程", "角色贡献", "写作技巧评估"]}' ctx = f'Instruction: {instruction}\nInput: {input_text}\n\nResponse:' print(ctx) def my_print(s): print(s, end='', flush=True) args = PIPELINE_ARGS(temperature = 0.8, top_p = 0.1, top_k = 0, # top_k = 0 then ignore alpha_frequency = 0.25, alpha_presence = 0.25, alpha_decay = 0.996, # gradually decay the penalty token_ban = [0], # ban the generation of some tokens token_stop = [0,1], # stop generation whenever you see any token here chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower) pipeline.generate(ctx, token_count=2000, args=args, callback=my_print,state=states_value) print('\n')