yujia23 commited on
Commit
ad11639
·
verified ·
1 Parent(s): 8e122ed

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +156 -0
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +5 -0
  5. checkpoint-1130/README.md +202 -0
  6. checkpoint-1130/adapter_config.json +34 -0
  7. checkpoint-1130/adapter_model.safetensors +3 -0
  8. checkpoint-1130/added_tokens.json +5 -0
  9. checkpoint-1130/merges.txt +0 -0
  10. checkpoint-1130/optimizer.pt +3 -0
  11. checkpoint-1130/rng_state_0.pth +3 -0
  12. checkpoint-1130/rng_state_1.pth +3 -0
  13. checkpoint-1130/scheduler.pt +3 -0
  14. checkpoint-1130/special_tokens_map.json +20 -0
  15. checkpoint-1130/tokenizer.json +0 -0
  16. checkpoint-1130/tokenizer_config.json +43 -0
  17. checkpoint-1130/trainer_state.json +0 -0
  18. checkpoint-1130/training_args.bin +3 -0
  19. checkpoint-1130/vocab.json +0 -0
  20. checkpoint-1695/README.md +202 -0
  21. checkpoint-1695/adapter_config.json +34 -0
  22. checkpoint-1695/adapter_model.safetensors +3 -0
  23. checkpoint-1695/added_tokens.json +5 -0
  24. checkpoint-1695/merges.txt +0 -0
  25. checkpoint-1695/optimizer.pt +3 -0
  26. checkpoint-1695/rng_state_0.pth +3 -0
  27. checkpoint-1695/rng_state_1.pth +3 -0
  28. checkpoint-1695/scheduler.pt +3 -0
  29. checkpoint-1695/special_tokens_map.json +20 -0
  30. checkpoint-1695/tokenizer.json +0 -0
  31. checkpoint-1695/tokenizer_config.json +43 -0
  32. checkpoint-1695/trainer_state.json +0 -0
  33. checkpoint-1695/training_args.bin +3 -0
  34. checkpoint-1695/vocab.json +0 -0
  35. checkpoint-565/README.md +202 -0
  36. checkpoint-565/adapter_config.json +34 -0
  37. checkpoint-565/adapter_model.safetensors +3 -0
  38. checkpoint-565/added_tokens.json +5 -0
  39. checkpoint-565/merges.txt +0 -0
  40. checkpoint-565/optimizer.pt +3 -0
  41. checkpoint-565/rng_state_0.pth +3 -0
  42. checkpoint-565/rng_state_1.pth +3 -0
  43. checkpoint-565/scheduler.pt +3 -0
  44. checkpoint-565/special_tokens_map.json +20 -0
  45. checkpoint-565/tokenizer.json +0 -0
  46. checkpoint-565/tokenizer_config.json +43 -0
  47. checkpoint-565/trainer_state.json +4008 -0
  48. checkpoint-565/training_args.bin +3 -0
  49. checkpoint-565/vocab.json +0 -0
  50. config.json +42 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: Qwen/Qwen1.5-7B
7
+ model-index:
8
+ - name: home/yujia/home/CN_Hateful/trained_models/qwen/toxi/3e-5/
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # base_model: Qwen/Qwen-7B
21
+ base_model: Qwen/Qwen1.5-7B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: true
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ datasets:
32
+ # - path: mhenrichsen/alpaca_2k_test
33
+ - path: /home/yujia/home/CN_Hateful/train_toxiCN.json
34
+ ds_type: json
35
+ type: alpaca
36
+ dataset_prepared_path:
37
+ val_set_size: 0.05
38
+ output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/toxi/3e-5/
39
+
40
+ sequence_len: 256 # supports up to 8192
41
+ sample_packing: false
42
+ pad_to_sequence_len:
43
+
44
+ adapter: lora
45
+ lora_model_dir:
46
+ lora_r: 32
47
+ lora_alpha: 16
48
+ lora_dropout: 0.05
49
+ lora_target_linear: true
50
+ lora_fan_in_fan_out:
51
+
52
+ wandb_project:
53
+ wandb_entity:
54
+ wandb_watch:
55
+ wandb_name:
56
+ wandb_log_model:
57
+
58
+ gradient_accumulation_steps: 4
59
+ micro_batch_size: 2
60
+ num_epochs: 3
61
+ optimizer: adamw_bnb_8bit
62
+ lr_scheduler: cosine
63
+ learning_rate: 0.00003
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: auto
68
+ fp16:
69
+ tf32: false
70
+
71
+ gradient_checkpointing: false
72
+ early_stopping_patience:
73
+ resume_from_checkpoint:
74
+ local_rank:
75
+ logging_steps: 1
76
+ xformers_attention:
77
+ flash_attention:
78
+
79
+ warmup_steps: 10
80
+ evals_per_epoch: 4
81
+ eval_table_size:
82
+ eval_max_new_tokens: 20
83
+ saves_per_epoch: 1
84
+ debug:
85
+ deepspeed:
86
+ weight_decay: 0.0
87
+ fsdp:
88
+ fsdp_config:
89
+ special_tokens:
90
+
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # home/yujia/home/CN_Hateful/trained_models/qwen/toxi/3e-5/
96
+
97
+ This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
98
+ It achieves the following results on the evaluation set:
99
+ - Loss: 0.0527
100
+
101
+ ## Model description
102
+
103
+ More information needed
104
+
105
+ ## Intended uses & limitations
106
+
107
+ More information needed
108
+
109
+ ## Training and evaluation data
110
+
111
+ More information needed
112
+
113
+ ## Training procedure
114
+
115
+ ### Training hyperparameters
116
+
117
+ The following hyperparameters were used during training:
118
+ - learning_rate: 3e-05
119
+ - train_batch_size: 2
120
+ - eval_batch_size: 2
121
+ - seed: 42
122
+ - distributed_type: multi-GPU
123
+ - num_devices: 2
124
+ - gradient_accumulation_steps: 4
125
+ - total_train_batch_size: 16
126
+ - total_eval_batch_size: 4
127
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
128
+ - lr_scheduler_type: cosine
129
+ - lr_scheduler_warmup_steps: 10
130
+ - num_epochs: 3
131
+
132
+ ### Training results
133
+
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:-----:|:----:|:---------------:|
136
+ | 3.4697 | 0.0 | 1 | 3.5475 |
137
+ | 0.0788 | 0.25 | 142 | 0.0807 |
138
+ | 0.0973 | 0.5 | 284 | 0.0657 |
139
+ | 0.0454 | 0.75 | 426 | 0.0627 |
140
+ | 0.0263 | 1.0 | 568 | 0.0547 |
141
+ | 0.0819 | 1.26 | 710 | 0.0521 |
142
+ | 0.0552 | 1.51 | 852 | 0.0530 |
143
+ | 0.0764 | 1.76 | 994 | 0.0523 |
144
+ | 0.0503 | 2.01 | 1136 | 0.0514 |
145
+ | 0.0221 | 2.26 | 1278 | 0.0519 |
146
+ | 0.0267 | 2.51 | 1420 | 0.0534 |
147
+ | 0.0213 | 2.76 | 1562 | 0.0527 |
148
+
149
+
150
+ ### Framework versions
151
+
152
+ - PEFT 0.10.0
153
+ - Transformers 4.40.0.dev0
154
+ - Pytorch 2.2.1+cu121
155
+ - Datasets 2.18.0
156
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a097c80438fd539fdb284377d15cbebc4e0d969cffd1eefe5c6b6886f397ae
3
+ size 319977674
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1130/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1130/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b705c44b05d7a90e2b92905f21d2ef5b42a8bd68b95a84a3a5d30a0b0caaff2b
3
+ size 319876032
checkpoint-1130/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a091798c6d1d114e21a6afb2bb7b77841e5a55180921545994a7fa5096c1d1f9
3
+ size 160736532
checkpoint-1130/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b5ce99929bf679c66efd3571d6d16ec2bc09d695d01903fcacc74246e288546
3
+ size 14512
checkpoint-1130/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87959f9259619b31ece50de4d6f6e1852b421537d8bf5f40923f2b9835361944
3
+ size 14512
checkpoint-1130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80f42673594cc7781d7fffeba69a36051db67a8044ccd535621ac2ad6f941d43
3
+ size 1064
checkpoint-1130/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1130/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1130/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222c6d9f6232f31ff9a258358b395f70d592023a50d4056572ccf3372d2fda1
3
+ size 5752
checkpoint-1130/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1695/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1695/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59750990282387d3dd367c425540b1955a4f635528b0162a1b41bd22d057c993
3
+ size 319876032
checkpoint-1695/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1695/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb9dd174a4cf15daa9fcdba73306715199b5be7e1b71840b099ebc0d2e234be5
3
+ size 160736532
checkpoint-1695/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3be619f0408a46b7c595a0e16467ed349083b4f5fc49d2bda7b06933a47f2d79
3
+ size 14512
checkpoint-1695/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b912b56538b0daf0219944e37db6b66e8b297d0c8462672d5a4f11b2365846f0
3
+ size 14512
checkpoint-1695/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d404034bd23dacfb15a16af02850f46cff58637fce8451371ec4b18135418a7a
3
+ size 1064
checkpoint-1695/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1695/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1695/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222c6d9f6232f31ff9a258358b395f70d592023a50d4056572ccf3372d2fda1
3
+ size 5752
checkpoint-1695/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-565/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-565/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeaa950e86fcb74b4004e9e16ff704679b2c93d7d5c7e611c5f5f21a8050e3f1
3
+ size 319876032
checkpoint-565/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-565/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ca5b5a9fe92c7b94358c0f1b63f7c37adfe1065250b9616c18bad46747a21c1
3
+ size 160736532
checkpoint-565/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ed7c1ca047ccc61dec57205e4e352265f27f08faafcef79a62d8c8620de4e3
3
+ size 14512
checkpoint-565/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a120d0d1b40b3da51cdbdb6991575094a50cabc516b462c83d578e06a5a986
3
+ size 14512
checkpoint-565/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f77f45d57377e8bda860399d12ebd45b17ac6789ceccd671eb4c3cc6e5f990
3
+ size 1064
checkpoint-565/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-565/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-565/trainer_state.json ADDED
@@ -0,0 +1,4008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9995577178239717,
5
+ "eval_steps": 142,
6
+ "global_step": 565,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 5.333217144012451,
14
+ "learning_rate": 3e-06,
15
+ "loss": 3.4697,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 3.547457695007324,
21
+ "eval_runtime": 14.4761,
22
+ "eval_samples_per_second": 32.882,
23
+ "eval_steps_per_second": 8.22,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 5.45876932144165,
29
+ "learning_rate": 6e-06,
30
+ "loss": 3.4361,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 5.8387346267700195,
36
+ "learning_rate": 9e-06,
37
+ "loss": 3.6111,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 5.629228591918945,
43
+ "learning_rate": 1.2e-05,
44
+ "loss": 3.468,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 5.132396697998047,
50
+ "learning_rate": 1.5e-05,
51
+ "loss": 3.4794,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 5.605806350708008,
57
+ "learning_rate": 1.8e-05,
58
+ "loss": 3.4557,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "grad_norm": 5.7556891441345215,
64
+ "learning_rate": 2.1e-05,
65
+ "loss": 3.4051,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01,
70
+ "grad_norm": 4.8776655197143555,
71
+ "learning_rate": 2.4e-05,
72
+ "loss": 3.1824,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 4.992830753326416,
78
+ "learning_rate": 2.7000000000000002e-05,
79
+ "loss": 3.0846,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 4.38725471496582,
85
+ "learning_rate": 3e-05,
86
+ "loss": 2.8616,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "grad_norm": 4.4103684425354,
92
+ "learning_rate": 2.9999973928796923e-05,
93
+ "loss": 2.5679,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.02,
98
+ "grad_norm": 4.2000298500061035,
99
+ "learning_rate": 2.999989571527831e-05,
100
+ "loss": 2.2378,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "grad_norm": 3.7659687995910645,
106
+ "learning_rate": 2.9999765359716046e-05,
107
+ "loss": 1.8411,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.02,
112
+ "grad_norm": 3.1735832691192627,
113
+ "learning_rate": 2.999958286256327e-05,
114
+ "loss": 1.519,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 2.7938477993011475,
120
+ "learning_rate": 2.9999348224454367e-05,
121
+ "loss": 1.2343,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "grad_norm": 2.5651497840881348,
127
+ "learning_rate": 2.9999061446204985e-05,
128
+ "loss": 1.0183,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "grad_norm": 2.3572280406951904,
134
+ "learning_rate": 2.9998722528812e-05,
135
+ "loss": 0.7906,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.03,
140
+ "grad_norm": 2.2292940616607666,
141
+ "learning_rate": 2.9998331473453557e-05,
142
+ "loss": 0.6625,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "grad_norm": 1.9572314023971558,
148
+ "learning_rate": 2.9997888281489015e-05,
149
+ "loss": 0.5271,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.04,
154
+ "grad_norm": 1.7180088758468628,
155
+ "learning_rate": 2.9997392954458985e-05,
156
+ "loss": 0.4319,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.04,
161
+ "grad_norm": 1.5089068412780762,
162
+ "learning_rate": 2.9996845494085306e-05,
163
+ "loss": 0.351,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "grad_norm": 1.2355144023895264,
169
+ "learning_rate": 2.999624590227103e-05,
170
+ "loss": 0.2994,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "grad_norm": 0.7736936211585999,
176
+ "learning_rate": 2.9995594181100443e-05,
177
+ "loss": 0.1704,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.04,
182
+ "grad_norm": 0.5642102956771851,
183
+ "learning_rate": 2.9994890332839027e-05,
184
+ "loss": 0.1217,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "grad_norm": 0.34946027398109436,
190
+ "learning_rate": 2.9994134359933476e-05,
191
+ "loss": 0.0992,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.05,
196
+ "grad_norm": 0.24627894163131714,
197
+ "learning_rate": 2.999332626501167e-05,
198
+ "loss": 0.0828,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.05,
203
+ "grad_norm": 0.28634899854660034,
204
+ "learning_rate": 2.9992466050882673e-05,
205
+ "loss": 0.0945,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "grad_norm": 0.1457609236240387,
211
+ "learning_rate": 2.9991553720536733e-05,
212
+ "loss": 0.0924,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "grad_norm": 0.3852764964103699,
218
+ "learning_rate": 2.9990589277145254e-05,
219
+ "loss": 0.0868,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.05,
224
+ "grad_norm": 0.28345659375190735,
225
+ "learning_rate": 2.9989572724060797e-05,
226
+ "loss": 0.0845,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "grad_norm": 0.24844343960285187,
232
+ "learning_rate": 2.998850406481707e-05,
233
+ "loss": 0.0756,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06,
238
+ "grad_norm": 0.2215878665447235,
239
+ "learning_rate": 2.9987383303128887e-05,
240
+ "loss": 0.0799,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.06,
245
+ "grad_norm": 0.20273327827453613,
246
+ "learning_rate": 2.9986210442892215e-05,
247
+ "loss": 0.099,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "grad_norm": 0.23849628865718842,
253
+ "learning_rate": 2.9984985488184086e-05,
254
+ "loss": 0.0709,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "grad_norm": 0.28950855135917664,
260
+ "learning_rate": 2.9983708443262656e-05,
261
+ "loss": 0.0736,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.06,
266
+ "grad_norm": 0.4729451537132263,
267
+ "learning_rate": 2.9982379312567126e-05,
268
+ "loss": 0.0898,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "grad_norm": 0.26402196288108826,
274
+ "learning_rate": 2.998099810071777e-05,
275
+ "loss": 0.0989,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.07,
280
+ "grad_norm": 0.21811941266059875,
281
+ "learning_rate": 2.9979564812515906e-05,
282
+ "loss": 0.0816,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.07,
287
+ "grad_norm": 0.4151253402233124,
288
+ "learning_rate": 2.9978079452943875e-05,
289
+ "loss": 0.0646,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "grad_norm": 0.5114066004753113,
295
+ "learning_rate": 2.9976542027165016e-05,
296
+ "loss": 0.0986,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "grad_norm": 0.23638691008090973,
302
+ "learning_rate": 2.9974952540523676e-05,
303
+ "loss": 0.0929,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.07,
308
+ "grad_norm": 0.18284691870212555,
309
+ "learning_rate": 2.997331099854516e-05,
310
+ "loss": 0.0707,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "grad_norm": 0.415445476770401,
316
+ "learning_rate": 2.9971617406935735e-05,
317
+ "loss": 0.0875,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.08,
322
+ "grad_norm": 0.35435256361961365,
323
+ "learning_rate": 2.9969871771582596e-05,
324
+ "loss": 0.0917,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.08,
329
+ "grad_norm": 0.5223746299743652,
330
+ "learning_rate": 2.996807409855385e-05,
331
+ "loss": 0.0839,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "grad_norm": 0.2852335274219513,
337
+ "learning_rate": 2.99662243940985e-05,
338
+ "loss": 0.0581,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "grad_norm": 0.19847406446933746,
344
+ "learning_rate": 2.9964322664646412e-05,
345
+ "loss": 0.0581,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.08,
350
+ "grad_norm": 0.42156773805618286,
351
+ "learning_rate": 2.9962368916808308e-05,
352
+ "loss": 0.0949,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "grad_norm": 0.1932952105998993,
358
+ "learning_rate": 2.9960363157375724e-05,
359
+ "loss": 0.0936,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.09,
364
+ "grad_norm": 0.28940048813819885,
365
+ "learning_rate": 2.9958305393321e-05,
366
+ "loss": 0.1074,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.09,
371
+ "grad_norm": 0.4381609857082367,
372
+ "learning_rate": 2.995619563179726e-05,
373
+ "loss": 0.1053,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.09,
378
+ "grad_norm": 0.16727806627750397,
379
+ "learning_rate": 2.9954033880138368e-05,
380
+ "loss": 0.0825,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "grad_norm": 0.3134240210056305,
386
+ "learning_rate": 2.995182014585892e-05,
387
+ "loss": 0.0565,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.1,
392
+ "grad_norm": 0.16883538663387299,
393
+ "learning_rate": 2.9949554436654215e-05,
394
+ "loss": 0.0805,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "grad_norm": 0.4369119107723236,
400
+ "learning_rate": 2.994723676040022e-05,
401
+ "loss": 0.079,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.1,
406
+ "grad_norm": 0.22722230851650238,
407
+ "learning_rate": 2.9944867125153548e-05,
408
+ "loss": 0.0707,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.1,
413
+ "grad_norm": 0.2767599821090698,
414
+ "learning_rate": 2.9942445539151432e-05,
415
+ "loss": 0.0877,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.1,
420
+ "grad_norm": 0.2087458074092865,
421
+ "learning_rate": 2.9939972010811693e-05,
422
+ "loss": 0.0746,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "grad_norm": 0.2058565467596054,
428
+ "learning_rate": 2.993744654873272e-05,
429
+ "loss": 0.0783,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.11,
434
+ "grad_norm": 0.2181982547044754,
435
+ "learning_rate": 2.993486916169341e-05,
436
+ "loss": 0.0764,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "grad_norm": 0.18020497262477875,
442
+ "learning_rate": 2.9932239858653183e-05,
443
+ "loss": 0.0675,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.11,
448
+ "grad_norm": 0.2599628269672394,
449
+ "learning_rate": 2.992955864875192e-05,
450
+ "loss": 0.0957,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.11,
455
+ "grad_norm": 0.2814478576183319,
456
+ "learning_rate": 2.9926825541309928e-05,
457
+ "loss": 0.0926,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.11,
462
+ "grad_norm": 0.21382613480091095,
463
+ "learning_rate": 2.9924040545827936e-05,
464
+ "loss": 0.0944,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "grad_norm": 0.16025784611701965,
470
+ "learning_rate": 2.9921203671987025e-05,
471
+ "loss": 0.0727,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.12,
476
+ "grad_norm": 0.22130753099918365,
477
+ "learning_rate": 2.9918314929648637e-05,
478
+ "loss": 0.0906,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "grad_norm": 0.16255636513233185,
484
+ "learning_rate": 2.991537432885449e-05,
485
+ "loss": 0.057,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.12,
490
+ "grad_norm": 0.3057488203048706,
491
+ "learning_rate": 2.991238187982659e-05,
492
+ "loss": 0.0866,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.12,
497
+ "grad_norm": 0.24336600303649902,
498
+ "learning_rate": 2.9909337592967176e-05,
499
+ "loss": 0.0509,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.12,
504
+ "grad_norm": 0.25192490220069885,
505
+ "learning_rate": 2.9906241478858666e-05,
506
+ "loss": 0.0677,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.13,
511
+ "grad_norm": 0.6552413105964661,
512
+ "learning_rate": 2.990309354826366e-05,
513
+ "loss": 0.1014,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.13,
518
+ "grad_norm": 0.22106248140335083,
519
+ "learning_rate": 2.9899893812124862e-05,
520
+ "loss": 0.0779,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.13,
525
+ "grad_norm": 0.2502892017364502,
526
+ "learning_rate": 2.989664228156507e-05,
527
+ "loss": 0.0759,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.13,
532
+ "grad_norm": 0.23127524554729462,
533
+ "learning_rate": 2.9893338967887128e-05,
534
+ "loss": 0.0735,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "grad_norm": 0.22794046998023987,
540
+ "learning_rate": 2.988998388257388e-05,
541
+ "loss": 0.048,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.13,
546
+ "grad_norm": 0.2867235541343689,
547
+ "learning_rate": 2.988657703728815e-05,
548
+ "loss": 0.0449,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.14,
553
+ "grad_norm": 0.28723156452178955,
554
+ "learning_rate": 2.9883118443872662e-05,
555
+ "loss": 0.0525,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.14,
560
+ "grad_norm": 0.21423418819904327,
561
+ "learning_rate": 2.9879608114350064e-05,
562
+ "loss": 0.0684,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.14,
567
+ "grad_norm": 0.22717736661434174,
568
+ "learning_rate": 2.9876046060922803e-05,
569
+ "loss": 0.0496,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.14,
574
+ "grad_norm": 0.52623051404953,
575
+ "learning_rate": 2.987243229597316e-05,
576
+ "loss": 0.1125,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "grad_norm": 0.41985878348350525,
582
+ "learning_rate": 2.9868766832063156e-05,
583
+ "loss": 0.1115,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "grad_norm": 0.5244089365005493,
589
+ "learning_rate": 2.986504968193454e-05,
590
+ "loss": 0.1185,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.15,
595
+ "grad_norm": 0.4969002604484558,
596
+ "learning_rate": 2.9861280858508712e-05,
597
+ "loss": 0.1123,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.15,
602
+ "grad_norm": 0.31229168176651,
603
+ "learning_rate": 2.9857460374886717e-05,
604
+ "loss": 0.082,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.15,
609
+ "grad_norm": 0.34874776005744934,
610
+ "learning_rate": 2.985358824434916e-05,
611
+ "loss": 0.0732,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.15,
616
+ "grad_norm": 0.33042728900909424,
617
+ "learning_rate": 2.984966448035619e-05,
618
+ "loss": 0.0719,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "grad_norm": 0.9238921403884888,
624
+ "learning_rate": 2.9845689096547442e-05,
625
+ "loss": 0.1171,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.16,
630
+ "grad_norm": 0.24976597726345062,
631
+ "learning_rate": 2.9841662106741986e-05,
632
+ "loss": 0.0875,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.16,
637
+ "grad_norm": 0.23768329620361328,
638
+ "learning_rate": 2.983758352493829e-05,
639
+ "loss": 0.0821,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.16,
644
+ "grad_norm": 0.1419605314731598,
645
+ "learning_rate": 2.983345336531415e-05,
646
+ "loss": 0.0696,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.16,
651
+ "grad_norm": 0.15112988650798798,
652
+ "learning_rate": 2.9829271642226665e-05,
653
+ "loss": 0.0958,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.16,
658
+ "grad_norm": 0.11599217355251312,
659
+ "learning_rate": 2.9825038370212183e-05,
660
+ "loss": 0.0838,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.16,
665
+ "grad_norm": 0.34909361600875854,
666
+ "learning_rate": 2.982075356398623e-05,
667
+ "loss": 0.0922,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "grad_norm": 0.3156541585922241,
673
+ "learning_rate": 2.9816417238443482e-05,
674
+ "loss": 0.106,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.17,
679
+ "grad_norm": 0.21198609471321106,
680
+ "learning_rate": 2.9812029408657698e-05,
681
+ "loss": 0.0832,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.17,
686
+ "grad_norm": 0.17507284879684448,
687
+ "learning_rate": 2.9807590089881687e-05,
688
+ "loss": 0.0736,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.17,
693
+ "grad_norm": 0.09285402297973633,
694
+ "learning_rate": 2.980309929754722e-05,
695
+ "loss": 0.0816,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.17,
700
+ "grad_norm": 0.21642349660396576,
701
+ "learning_rate": 2.9798557047265023e-05,
702
+ "loss": 0.0806,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "grad_norm": 0.20919114351272583,
708
+ "learning_rate": 2.979396335482469e-05,
709
+ "loss": 0.0852,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.18,
714
+ "grad_norm": 0.1738620400428772,
715
+ "learning_rate": 2.9789318236194618e-05,
716
+ "loss": 0.079,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.18,
721
+ "grad_norm": 0.19599463045597076,
722
+ "learning_rate": 2.9784621707521993e-05,
723
+ "loss": 0.0635,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.18,
728
+ "grad_norm": 0.18762755393981934,
729
+ "learning_rate": 2.97798737851327e-05,
730
+ "loss": 0.0863,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.18,
735
+ "grad_norm": 0.15935586392879486,
736
+ "learning_rate": 2.977507448553128e-05,
737
+ "loss": 0.0692,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.18,
742
+ "grad_norm": 0.25695595145225525,
743
+ "learning_rate": 2.9770223825400872e-05,
744
+ "loss": 0.0914,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "grad_norm": 0.17666970193386078,
750
+ "learning_rate": 2.9765321821603143e-05,
751
+ "loss": 0.0617,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.19,
756
+ "grad_norm": 0.1571740359067917,
757
+ "learning_rate": 2.9760368491178244e-05,
758
+ "loss": 0.0797,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "grad_norm": 0.13504642248153687,
764
+ "learning_rate": 2.9755363851344753e-05,
765
+ "loss": 0.0647,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.19,
770
+ "grad_norm": 0.12887655198574066,
771
+ "learning_rate": 2.9750307919499595e-05,
772
+ "loss": 0.0662,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.19,
777
+ "grad_norm": 0.22609621286392212,
778
+ "learning_rate": 2.9745200713218002e-05,
779
+ "loss": 0.0809,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.19,
784
+ "grad_norm": 0.2685830295085907,
785
+ "learning_rate": 2.9740042250253443e-05,
786
+ "loss": 0.084,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.2,
791
+ "grad_norm": 0.18346565961837769,
792
+ "learning_rate": 2.973483254853756e-05,
793
+ "loss": 0.0568,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.2,
798
+ "grad_norm": 0.4906081259250641,
799
+ "learning_rate": 2.9729571626180116e-05,
800
+ "loss": 0.0911,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "grad_norm": 0.28486496210098267,
806
+ "learning_rate": 2.972425950146891e-05,
807
+ "loss": 0.0671,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.2,
812
+ "grad_norm": 0.35737311840057373,
813
+ "learning_rate": 2.9718896192869758e-05,
814
+ "loss": 0.1005,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.2,
819
+ "grad_norm": 0.27113574743270874,
820
+ "learning_rate": 2.9713481719026368e-05,
821
+ "loss": 0.0655,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.21,
826
+ "grad_norm": 0.17216627299785614,
827
+ "learning_rate": 2.970801609876032e-05,
828
+ "loss": 0.0463,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.21,
833
+ "grad_norm": 0.1476421356201172,
834
+ "learning_rate": 2.9702499351070992e-05,
835
+ "loss": 0.0534,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.21,
840
+ "grad_norm": 0.3753887116909027,
841
+ "learning_rate": 2.969693149513548e-05,
842
+ "loss": 0.0763,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "grad_norm": 0.22127705812454224,
848
+ "learning_rate": 2.969131255030855e-05,
849
+ "loss": 0.0548,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.21,
854
+ "grad_norm": 0.18454331159591675,
855
+ "learning_rate": 2.9685642536122545e-05,
856
+ "loss": 0.0494,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.21,
861
+ "grad_norm": 0.24991334974765778,
862
+ "learning_rate": 2.9679921472287358e-05,
863
+ "loss": 0.089,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.22,
868
+ "grad_norm": 0.17822043597698212,
869
+ "learning_rate": 2.967414937869031e-05,
870
+ "loss": 0.0337,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.22,
875
+ "grad_norm": 0.19183677434921265,
876
+ "learning_rate": 2.9668326275396133e-05,
877
+ "loss": 0.0627,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.22,
882
+ "grad_norm": 0.1919647753238678,
883
+ "learning_rate": 2.966245218264687e-05,
884
+ "loss": 0.0549,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "grad_norm": 0.3507068455219269,
890
+ "learning_rate": 2.96565271208618e-05,
891
+ "loss": 0.0802,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.22,
896
+ "grad_norm": 0.3020438253879547,
897
+ "learning_rate": 2.9650551110637397e-05,
898
+ "loss": 0.0803,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.22,
903
+ "grad_norm": 0.951285183429718,
904
+ "learning_rate": 2.964452417274723e-05,
905
+ "loss": 0.1049,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.23,
910
+ "grad_norm": 0.6102455258369446,
911
+ "learning_rate": 2.96384463281419e-05,
912
+ "loss": 0.0711,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.23,
917
+ "grad_norm": 0.3394455313682556,
918
+ "learning_rate": 2.9632317597948968e-05,
919
+ "loss": 0.0704,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.23,
924
+ "grad_norm": 0.296131432056427,
925
+ "learning_rate": 2.9626138003472884e-05,
926
+ "loss": 0.0726,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "grad_norm": 0.37837737798690796,
932
+ "learning_rate": 2.9619907566194915e-05,
933
+ "loss": 0.092,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.23,
938
+ "grad_norm": 0.7398345470428467,
939
+ "learning_rate": 2.9613626307773055e-05,
940
+ "loss": 0.1055,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.24,
945
+ "grad_norm": 0.18485528230667114,
946
+ "learning_rate": 2.9607294250041965e-05,
947
+ "loss": 0.0615,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.24,
952
+ "grad_norm": 0.4245338439941406,
953
+ "learning_rate": 2.96009114150129e-05,
954
+ "loss": 0.0938,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.24,
959
+ "grad_norm": 0.25269758701324463,
960
+ "learning_rate": 2.959447782487361e-05,
961
+ "loss": 0.0686,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.24,
966
+ "grad_norm": 0.1531674861907959,
967
+ "learning_rate": 2.9587993501988292e-05,
968
+ "loss": 0.0515,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "grad_norm": 0.1748104691505432,
974
+ "learning_rate": 2.958145846889749e-05,
975
+ "loss": 0.0841,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.24,
980
+ "grad_norm": 0.16989848017692566,
981
+ "learning_rate": 2.957487274831803e-05,
982
+ "loss": 0.0822,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.25,
987
+ "grad_norm": 0.16533434391021729,
988
+ "learning_rate": 2.9568236363142927e-05,
989
+ "loss": 0.0676,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.25,
994
+ "grad_norm": 0.12993450462818146,
995
+ "learning_rate": 2.9561549336441333e-05,
996
+ "loss": 0.0837,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.25,
1001
+ "grad_norm": 0.23538929224014282,
1002
+ "learning_rate": 2.955481169145841e-05,
1003
+ "loss": 0.0784,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.25,
1008
+ "grad_norm": 0.1557569056749344,
1009
+ "learning_rate": 2.95480234516153e-05,
1010
+ "loss": 0.0788,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.25,
1015
+ "eval_loss": 0.08073563128709793,
1016
+ "eval_runtime": 14.7663,
1017
+ "eval_samples_per_second": 32.236,
1018
+ "eval_steps_per_second": 8.059,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.25,
1023
+ "grad_norm": 0.217232346534729,
1024
+ "learning_rate": 2.9541184640509015e-05,
1025
+ "loss": 0.0598,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.25,
1030
+ "grad_norm": 0.2527540326118469,
1031
+ "learning_rate": 2.953429528191236e-05,
1032
+ "loss": 0.0604,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.26,
1037
+ "grad_norm": 0.1690036803483963,
1038
+ "learning_rate": 2.9527355399773847e-05,
1039
+ "loss": 0.0815,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.26,
1044
+ "grad_norm": 0.15807238221168518,
1045
+ "learning_rate": 2.9520365018217622e-05,
1046
+ "loss": 0.0695,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.26,
1051
+ "grad_norm": 0.12181195616722107,
1052
+ "learning_rate": 2.951332416154337e-05,
1053
+ "loss": 0.0869,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.26,
1058
+ "grad_norm": 0.27408546209335327,
1059
+ "learning_rate": 2.9506232854226242e-05,
1060
+ "loss": 0.0725,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.26,
1065
+ "grad_norm": 0.1542072892189026,
1066
+ "learning_rate": 2.9499091120916757e-05,
1067
+ "loss": 0.0616,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.27,
1072
+ "grad_norm": 0.31103819608688354,
1073
+ "learning_rate": 2.9491898986440726e-05,
1074
+ "loss": 0.0791,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.27,
1079
+ "grad_norm": 0.15201374888420105,
1080
+ "learning_rate": 2.9484656475799164e-05,
1081
+ "loss": 0.0681,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.27,
1086
+ "grad_norm": 0.33369091153144836,
1087
+ "learning_rate": 2.9477363614168197e-05,
1088
+ "loss": 0.0673,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.27,
1093
+ "grad_norm": 0.1663801521062851,
1094
+ "learning_rate": 2.9470020426898983e-05,
1095
+ "loss": 0.0514,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.27,
1100
+ "grad_norm": 0.3342381715774536,
1101
+ "learning_rate": 2.946262693951762e-05,
1102
+ "loss": 0.0824,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.27,
1107
+ "grad_norm": 0.15362265706062317,
1108
+ "learning_rate": 2.9455183177725055e-05,
1109
+ "loss": 0.0801,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.28,
1114
+ "grad_norm": 0.1435208022594452,
1115
+ "learning_rate": 2.9447689167397e-05,
1116
+ "loss": 0.0625,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.28,
1121
+ "grad_norm": 0.23910465836524963,
1122
+ "learning_rate": 2.944014493458383e-05,
1123
+ "loss": 0.0977,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.28,
1128
+ "grad_norm": 0.15610359609127045,
1129
+ "learning_rate": 2.9432550505510516e-05,
1130
+ "loss": 0.0329,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.28,
1135
+ "grad_norm": 0.23283672332763672,
1136
+ "learning_rate": 2.942490590657651e-05,
1137
+ "loss": 0.1056,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.28,
1142
+ "grad_norm": 0.21941441297531128,
1143
+ "learning_rate": 2.9417211164355668e-05,
1144
+ "loss": 0.0765,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.28,
1149
+ "grad_norm": 0.16233329474925995,
1150
+ "learning_rate": 2.9409466305596135e-05,
1151
+ "loss": 0.056,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.29,
1156
+ "grad_norm": 0.22437363862991333,
1157
+ "learning_rate": 2.9401671357220297e-05,
1158
+ "loss": 0.0845,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.29,
1163
+ "grad_norm": 0.24630329012870789,
1164
+ "learning_rate": 2.9393826346324634e-05,
1165
+ "loss": 0.0588,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.29,
1170
+ "grad_norm": 0.17304874956607819,
1171
+ "learning_rate": 2.9385931300179675e-05,
1172
+ "loss": 0.0582,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.29,
1177
+ "grad_norm": 0.35216909646987915,
1178
+ "learning_rate": 2.9377986246229853e-05,
1179
+ "loss": 0.1085,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.29,
1184
+ "grad_norm": 0.13712701201438904,
1185
+ "learning_rate": 2.9369991212093462e-05,
1186
+ "loss": 0.0451,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.3,
1191
+ "grad_norm": 0.15788517892360687,
1192
+ "learning_rate": 2.9361946225562516e-05,
1193
+ "loss": 0.0572,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.3,
1198
+ "grad_norm": 0.15666936337947845,
1199
+ "learning_rate": 2.9353851314602676e-05,
1200
+ "loss": 0.0528,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.3,
1205
+ "grad_norm": 0.17414148151874542,
1206
+ "learning_rate": 2.9345706507353158e-05,
1207
+ "loss": 0.0548,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.3,
1212
+ "grad_norm": 0.2488938271999359,
1213
+ "learning_rate": 2.9337511832126616e-05,
1214
+ "loss": 0.0904,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.3,
1219
+ "grad_norm": 0.2884049415588379,
1220
+ "learning_rate": 2.9329267317409053e-05,
1221
+ "loss": 0.0721,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.3,
1226
+ "grad_norm": 0.3515964150428772,
1227
+ "learning_rate": 2.9320972991859728e-05,
1228
+ "loss": 0.1108,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.31,
1233
+ "grad_norm": 0.49220752716064453,
1234
+ "learning_rate": 2.9312628884311048e-05,
1235
+ "loss": 0.1056,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.31,
1240
+ "grad_norm": 0.1283823549747467,
1241
+ "learning_rate": 2.9304235023768465e-05,
1242
+ "loss": 0.062,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.31,
1247
+ "grad_norm": 0.20535992085933685,
1248
+ "learning_rate": 2.9295791439410387e-05,
1249
+ "loss": 0.0591,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.31,
1254
+ "grad_norm": 0.548753559589386,
1255
+ "learning_rate": 2.9287298160588073e-05,
1256
+ "loss": 0.1252,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.31,
1261
+ "grad_norm": 0.17065873742103577,
1262
+ "learning_rate": 2.927875521682551e-05,
1263
+ "loss": 0.0717,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.31,
1268
+ "grad_norm": 0.15028174221515656,
1269
+ "learning_rate": 2.9270162637819352e-05,
1270
+ "loss": 0.059,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.32,
1275
+ "grad_norm": 0.3822297751903534,
1276
+ "learning_rate": 2.9261520453438775e-05,
1277
+ "loss": 0.0752,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.32,
1282
+ "grad_norm": 0.17701248824596405,
1283
+ "learning_rate": 2.9252828693725404e-05,
1284
+ "loss": 0.0872,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.32,
1289
+ "grad_norm": 0.1596059501171112,
1290
+ "learning_rate": 2.9244087388893187e-05,
1291
+ "loss": 0.051,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.32,
1296
+ "grad_norm": 0.13807597756385803,
1297
+ "learning_rate": 2.9235296569328303e-05,
1298
+ "loss": 0.0518,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.32,
1303
+ "grad_norm": 0.14610590040683746,
1304
+ "learning_rate": 2.922645626558905e-05,
1305
+ "loss": 0.08,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.33,
1310
+ "grad_norm": 0.13961593806743622,
1311
+ "learning_rate": 2.921756650840574e-05,
1312
+ "loss": 0.0496,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.33,
1317
+ "grad_norm": 0.12945222854614258,
1318
+ "learning_rate": 2.92086273286806e-05,
1319
+ "loss": 0.0725,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.33,
1324
+ "grad_norm": 0.16739709675312042,
1325
+ "learning_rate": 2.9199638757487648e-05,
1326
+ "loss": 0.0514,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.33,
1331
+ "grad_norm": 0.1626630425453186,
1332
+ "learning_rate": 2.9190600826072603e-05,
1333
+ "loss": 0.0506,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.33,
1338
+ "grad_norm": 0.17024777829647064,
1339
+ "learning_rate": 2.918151356585276e-05,
1340
+ "loss": 0.0646,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.33,
1345
+ "grad_norm": 0.12996181845664978,
1346
+ "learning_rate": 2.9172377008416898e-05,
1347
+ "loss": 0.0421,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.34,
1352
+ "grad_norm": 0.1544611155986786,
1353
+ "learning_rate": 2.916319118552515e-05,
1354
+ "loss": 0.0665,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.34,
1359
+ "grad_norm": 0.37734368443489075,
1360
+ "learning_rate": 2.9153956129108918e-05,
1361
+ "loss": 0.0851,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.34,
1366
+ "grad_norm": 0.28739050030708313,
1367
+ "learning_rate": 2.9144671871270734e-05,
1368
+ "loss": 0.0786,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.34,
1373
+ "grad_norm": 0.2730344533920288,
1374
+ "learning_rate": 2.913533844428417e-05,
1375
+ "loss": 0.0923,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.34,
1380
+ "grad_norm": 0.26277613639831543,
1381
+ "learning_rate": 2.912595588059371e-05,
1382
+ "loss": 0.0737,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.34,
1387
+ "grad_norm": 0.15028347074985504,
1388
+ "learning_rate": 2.9116524212814653e-05,
1389
+ "loss": 0.0528,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.35,
1394
+ "grad_norm": 0.5112478733062744,
1395
+ "learning_rate": 2.9107043473733e-05,
1396
+ "loss": 0.0744,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.35,
1401
+ "grad_norm": 0.1651376336812973,
1402
+ "learning_rate": 2.9097513696305304e-05,
1403
+ "loss": 0.0421,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.35,
1408
+ "grad_norm": 0.18412701785564423,
1409
+ "learning_rate": 2.908793491365861e-05,
1410
+ "loss": 0.0602,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.35,
1415
+ "grad_norm": 0.26233047246932983,
1416
+ "learning_rate": 2.90783071590903e-05,
1417
+ "loss": 0.086,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.35,
1422
+ "grad_norm": 0.17222779989242554,
1423
+ "learning_rate": 2.9068630466067997e-05,
1424
+ "loss": 0.0634,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.36,
1429
+ "grad_norm": 0.4317842125892639,
1430
+ "learning_rate": 2.905890486822943e-05,
1431
+ "loss": 0.0904,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.36,
1436
+ "grad_norm": 0.1886034905910492,
1437
+ "learning_rate": 2.9049130399382345e-05,
1438
+ "loss": 0.0699,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.36,
1443
+ "grad_norm": 0.21989533305168152,
1444
+ "learning_rate": 2.903930709350436e-05,
1445
+ "loss": 0.0623,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.36,
1450
+ "grad_norm": 0.19172674417495728,
1451
+ "learning_rate": 2.9029434984742866e-05,
1452
+ "loss": 0.0956,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.36,
1457
+ "grad_norm": 0.20230571925640106,
1458
+ "learning_rate": 2.9019514107414888e-05,
1459
+ "loss": 0.0865,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.36,
1464
+ "grad_norm": 0.258619487285614,
1465
+ "learning_rate": 2.9009544496006998e-05,
1466
+ "loss": 0.077,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.37,
1471
+ "grad_norm": 0.37927359342575073,
1472
+ "learning_rate": 2.8999526185175155e-05,
1473
+ "loss": 0.0955,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.37,
1478
+ "grad_norm": 0.1734340786933899,
1479
+ "learning_rate": 2.898945920974462e-05,
1480
+ "loss": 0.0698,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.37,
1485
+ "grad_norm": 0.2214702069759369,
1486
+ "learning_rate": 2.8979343604709818e-05,
1487
+ "loss": 0.0656,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.37,
1492
+ "grad_norm": 0.13421665132045746,
1493
+ "learning_rate": 2.8969179405234202e-05,
1494
+ "loss": 0.0801,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.37,
1499
+ "grad_norm": 0.1412036120891571,
1500
+ "learning_rate": 2.8958966646650172e-05,
1501
+ "loss": 0.0413,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.38,
1506
+ "grad_norm": 0.14668437838554382,
1507
+ "learning_rate": 2.894870536445891e-05,
1508
+ "loss": 0.067,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.38,
1513
+ "grad_norm": 0.17726927995681763,
1514
+ "learning_rate": 2.893839559433028e-05,
1515
+ "loss": 0.0572,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.38,
1520
+ "grad_norm": 0.1916431039571762,
1521
+ "learning_rate": 2.8928037372102698e-05,
1522
+ "loss": 0.0761,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.38,
1527
+ "grad_norm": 0.16705051064491272,
1528
+ "learning_rate": 2.8917630733783004e-05,
1529
+ "loss": 0.0604,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.38,
1534
+ "grad_norm": 0.17496813833713531,
1535
+ "learning_rate": 2.8907175715546337e-05,
1536
+ "loss": 0.0705,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.38,
1541
+ "grad_norm": 0.15736040472984314,
1542
+ "learning_rate": 2.889667235373603e-05,
1543
+ "loss": 0.0305,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.39,
1548
+ "grad_norm": 0.274248868227005,
1549
+ "learning_rate": 2.888612068486344e-05,
1550
+ "loss": 0.0783,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.39,
1555
+ "grad_norm": 0.24461400508880615,
1556
+ "learning_rate": 2.887552074560787e-05,
1557
+ "loss": 0.0643,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.39,
1562
+ "grad_norm": 0.20980973541736603,
1563
+ "learning_rate": 2.8864872572816407e-05,
1564
+ "loss": 0.0625,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.39,
1569
+ "grad_norm": 0.20946985483169556,
1570
+ "learning_rate": 2.885417620350381e-05,
1571
+ "loss": 0.0834,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.39,
1576
+ "grad_norm": 0.16951480507850647,
1577
+ "learning_rate": 2.8843431674852366e-05,
1578
+ "loss": 0.0528,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.39,
1583
+ "grad_norm": 0.1708109974861145,
1584
+ "learning_rate": 2.883263902421179e-05,
1585
+ "loss": 0.0728,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.4,
1590
+ "grad_norm": 0.14461833238601685,
1591
+ "learning_rate": 2.8821798289099054e-05,
1592
+ "loss": 0.0421,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.4,
1597
+ "grad_norm": 0.24623633921146393,
1598
+ "learning_rate": 2.881090950719831e-05,
1599
+ "loss": 0.0854,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.4,
1604
+ "grad_norm": 0.21715879440307617,
1605
+ "learning_rate": 2.87999727163607e-05,
1606
+ "loss": 0.0384,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.4,
1611
+ "grad_norm": 0.4943262040615082,
1612
+ "learning_rate": 2.878898795460426e-05,
1613
+ "loss": 0.0727,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.4,
1618
+ "grad_norm": 0.21625903248786926,
1619
+ "learning_rate": 2.8777955260113794e-05,
1620
+ "loss": 0.0764,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.41,
1625
+ "grad_norm": 0.49219760298728943,
1626
+ "learning_rate": 2.8766874671240708e-05,
1627
+ "loss": 0.0645,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.41,
1632
+ "grad_norm": 0.48366281390190125,
1633
+ "learning_rate": 2.8755746226502914e-05,
1634
+ "loss": 0.0812,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.41,
1639
+ "grad_norm": 0.23804642260074615,
1640
+ "learning_rate": 2.874456996458467e-05,
1641
+ "loss": 0.0412,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.41,
1646
+ "grad_norm": 0.15954728424549103,
1647
+ "learning_rate": 2.8733345924336448e-05,
1648
+ "loss": 0.0319,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.41,
1653
+ "grad_norm": 0.1840825229883194,
1654
+ "learning_rate": 2.872207414477482e-05,
1655
+ "loss": 0.0391,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.41,
1660
+ "grad_norm": 0.34154170751571655,
1661
+ "learning_rate": 2.8710754665082295e-05,
1662
+ "loss": 0.0871,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.42,
1667
+ "grad_norm": 0.28852567076683044,
1668
+ "learning_rate": 2.8699387524607206e-05,
1669
+ "loss": 0.0743,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.42,
1674
+ "grad_norm": 0.3130442798137665,
1675
+ "learning_rate": 2.868797276286355e-05,
1676
+ "loss": 0.0596,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "grad_norm": 0.15511904656887054,
1682
+ "learning_rate": 2.8676510419530875e-05,
1683
+ "loss": 0.0345,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.42,
1688
+ "grad_norm": 0.3511506915092468,
1689
+ "learning_rate": 2.866500053445412e-05,
1690
+ "loss": 0.0795,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.42,
1695
+ "grad_norm": 0.21553099155426025,
1696
+ "learning_rate": 2.86534431476435e-05,
1697
+ "loss": 0.0685,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.42,
1702
+ "grad_norm": 0.2557514011859894,
1703
+ "learning_rate": 2.8641838299274336e-05,
1704
+ "loss": 0.0386,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.43,
1709
+ "grad_norm": 0.22085203230381012,
1710
+ "learning_rate": 2.863018602968695e-05,
1711
+ "loss": 0.0741,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.43,
1716
+ "grad_norm": 0.3036896884441376,
1717
+ "learning_rate": 2.8618486379386496e-05,
1718
+ "loss": 0.0553,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "grad_norm": 0.24089917540550232,
1724
+ "learning_rate": 2.8606739389042838e-05,
1725
+ "loss": 0.0699,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.43,
1730
+ "grad_norm": 0.3548223376274109,
1731
+ "learning_rate": 2.8594945099490395e-05,
1732
+ "loss": 0.0573,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.43,
1737
+ "grad_norm": 0.288339763879776,
1738
+ "learning_rate": 2.8583103551728008e-05,
1739
+ "loss": 0.0592,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.44,
1744
+ "grad_norm": 0.3822185695171356,
1745
+ "learning_rate": 2.857121478691881e-05,
1746
+ "loss": 0.0788,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.44,
1751
+ "grad_norm": 0.3023355305194855,
1752
+ "learning_rate": 2.855927884639004e-05,
1753
+ "loss": 0.08,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.44,
1758
+ "grad_norm": 0.15000642836093903,
1759
+ "learning_rate": 2.854729577163294e-05,
1760
+ "loss": 0.053,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.44,
1765
+ "grad_norm": 0.38528746366500854,
1766
+ "learning_rate": 2.8535265604302614e-05,
1767
+ "loss": 0.132,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.44,
1772
+ "grad_norm": 0.3799440562725067,
1773
+ "learning_rate": 2.852318838621784e-05,
1774
+ "loss": 0.0824,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.44,
1779
+ "grad_norm": 0.1958758383989334,
1780
+ "learning_rate": 2.851106415936098e-05,
1781
+ "loss": 0.0501,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.45,
1786
+ "grad_norm": 0.47345441579818726,
1787
+ "learning_rate": 2.8498892965877776e-05,
1788
+ "loss": 0.076,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.45,
1793
+ "grad_norm": 0.4306192398071289,
1794
+ "learning_rate": 2.848667484807726e-05,
1795
+ "loss": 0.0907,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.45,
1800
+ "grad_norm": 0.15393877029418945,
1801
+ "learning_rate": 2.8474409848431562e-05,
1802
+ "loss": 0.0471,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.45,
1807
+ "grad_norm": 0.1548716276884079,
1808
+ "learning_rate": 2.8462098009575793e-05,
1809
+ "loss": 0.0545,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.45,
1814
+ "grad_norm": 0.2719079256057739,
1815
+ "learning_rate": 2.8449739374307877e-05,
1816
+ "loss": 0.0712,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.45,
1821
+ "grad_norm": 0.14566250145435333,
1822
+ "learning_rate": 2.8437333985588418e-05,
1823
+ "loss": 0.0491,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.46,
1828
+ "grad_norm": 0.17003220319747925,
1829
+ "learning_rate": 2.8424881886540527e-05,
1830
+ "loss": 0.078,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.46,
1835
+ "grad_norm": 0.16778719425201416,
1836
+ "learning_rate": 2.8412383120449707e-05,
1837
+ "loss": 0.0688,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.46,
1842
+ "grad_norm": 0.2298566699028015,
1843
+ "learning_rate": 2.839983773076367e-05,
1844
+ "loss": 0.0654,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.46,
1849
+ "grad_norm": 0.14038778841495514,
1850
+ "learning_rate": 2.8387245761092203e-05,
1851
+ "loss": 0.0656,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.46,
1856
+ "grad_norm": 0.2299400120973587,
1857
+ "learning_rate": 2.8374607255207012e-05,
1858
+ "loss": 0.0563,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.47,
1863
+ "grad_norm": 0.12228001654148102,
1864
+ "learning_rate": 2.8361922257041577e-05,
1865
+ "loss": 0.0426,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.47,
1870
+ "grad_norm": 0.2170531004667282,
1871
+ "learning_rate": 2.8349190810690977e-05,
1872
+ "loss": 0.0739,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.47,
1877
+ "grad_norm": 0.25972139835357666,
1878
+ "learning_rate": 2.8336412960411765e-05,
1879
+ "loss": 0.0449,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.47,
1884
+ "grad_norm": 0.16110770404338837,
1885
+ "learning_rate": 2.8323588750621802e-05,
1886
+ "loss": 0.0429,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.47,
1891
+ "grad_norm": 0.36092159152030945,
1892
+ "learning_rate": 2.8310718225900095e-05,
1893
+ "loss": 0.0532,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.47,
1898
+ "grad_norm": 0.13183802366256714,
1899
+ "learning_rate": 2.8297801430986652e-05,
1900
+ "loss": 0.0306,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.48,
1905
+ "grad_norm": 0.1969520002603531,
1906
+ "learning_rate": 2.8284838410782327e-05,
1907
+ "loss": 0.0729,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.48,
1912
+ "grad_norm": 0.3288170397281647,
1913
+ "learning_rate": 2.8271829210348657e-05,
1914
+ "loss": 0.0657,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.48,
1919
+ "grad_norm": 0.17383714020252228,
1920
+ "learning_rate": 2.82587738749077e-05,
1921
+ "loss": 0.0296,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.48,
1926
+ "grad_norm": 0.3440845310688019,
1927
+ "learning_rate": 2.824567244984192e-05,
1928
+ "loss": 0.055,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.48,
1933
+ "grad_norm": 0.5535409450531006,
1934
+ "learning_rate": 2.8232524980693947e-05,
1935
+ "loss": 0.0845,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.48,
1940
+ "grad_norm": 0.3418692946434021,
1941
+ "learning_rate": 2.8219331513166503e-05,
1942
+ "loss": 0.0501,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.49,
1947
+ "grad_norm": 0.24258548021316528,
1948
+ "learning_rate": 2.8206092093122195e-05,
1949
+ "loss": 0.0572,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.49,
1954
+ "grad_norm": 0.2323545515537262,
1955
+ "learning_rate": 2.8192806766583373e-05,
1956
+ "loss": 0.036,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.49,
1961
+ "grad_norm": 0.18079668283462524,
1962
+ "learning_rate": 2.8179475579731967e-05,
1963
+ "loss": 0.039,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.49,
1968
+ "grad_norm": 0.6126664280891418,
1969
+ "learning_rate": 2.8166098578909315e-05,
1970
+ "loss": 0.0964,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.49,
1975
+ "grad_norm": 0.29580938816070557,
1976
+ "learning_rate": 2.815267581061602e-05,
1977
+ "loss": 0.0682,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.5,
1982
+ "grad_norm": 0.25424325466156006,
1983
+ "learning_rate": 2.8139207321511778e-05,
1984
+ "loss": 0.0682,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.5,
1989
+ "grad_norm": 0.20733873546123505,
1990
+ "learning_rate": 2.8125693158415217e-05,
1991
+ "loss": 0.0369,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.5,
1996
+ "grad_norm": 0.28711849451065063,
1997
+ "learning_rate": 2.8112133368303737e-05,
1998
+ "loss": 0.0734,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.5,
2003
+ "grad_norm": 0.18627013266086578,
2004
+ "learning_rate": 2.809852799831334e-05,
2005
+ "loss": 0.052,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.5,
2010
+ "grad_norm": 0.3224278688430786,
2011
+ "learning_rate": 2.8084877095738477e-05,
2012
+ "loss": 0.0973,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.5,
2017
+ "eval_loss": 0.06570792198181152,
2018
+ "eval_runtime": 14.7272,
2019
+ "eval_samples_per_second": 32.321,
2020
+ "eval_steps_per_second": 8.08,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.5,
2025
+ "grad_norm": 0.38838616013526917,
2026
+ "learning_rate": 2.8071180708031874e-05,
2027
+ "loss": 0.0916,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.51,
2032
+ "grad_norm": 0.24502405524253845,
2033
+ "learning_rate": 2.8057438882804372e-05,
2034
+ "loss": 0.0816,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.51,
2039
+ "grad_norm": 0.4185783863067627,
2040
+ "learning_rate": 2.8043651667824767e-05,
2041
+ "loss": 0.0776,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.51,
2046
+ "grad_norm": 0.2056495100259781,
2047
+ "learning_rate": 2.8029819111019618e-05,
2048
+ "loss": 0.0266,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.51,
2053
+ "grad_norm": 0.19617842137813568,
2054
+ "learning_rate": 2.8015941260473117e-05,
2055
+ "loss": 0.0456,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.51,
2060
+ "grad_norm": 0.3548401892185211,
2061
+ "learning_rate": 2.8002018164426896e-05,
2062
+ "loss": 0.0507,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.51,
2067
+ "grad_norm": 0.2668496370315552,
2068
+ "learning_rate": 2.798804987127988e-05,
2069
+ "loss": 0.0539,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.52,
2074
+ "grad_norm": 0.2864347994327545,
2075
+ "learning_rate": 2.7974036429588082e-05,
2076
+ "loss": 0.076,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.52,
2081
+ "grad_norm": 0.26988208293914795,
2082
+ "learning_rate": 2.7959977888064484e-05,
2083
+ "loss": 0.0599,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.52,
2088
+ "grad_norm": 0.451043039560318,
2089
+ "learning_rate": 2.7945874295578827e-05,
2090
+ "loss": 0.0676,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.52,
2095
+ "grad_norm": 0.2092967927455902,
2096
+ "learning_rate": 2.7931725701157462e-05,
2097
+ "loss": 0.0653,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.52,
2102
+ "grad_norm": 0.25097522139549255,
2103
+ "learning_rate": 2.7917532153983176e-05,
2104
+ "loss": 0.086,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.53,
2109
+ "grad_norm": 0.1981886476278305,
2110
+ "learning_rate": 2.790329370339501e-05,
2111
+ "loss": 0.0616,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.53,
2116
+ "grad_norm": 0.20687969028949738,
2117
+ "learning_rate": 2.7889010398888104e-05,
2118
+ "loss": 0.0479,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.53,
2123
+ "grad_norm": 0.16657814383506775,
2124
+ "learning_rate": 2.7874682290113514e-05,
2125
+ "loss": 0.0432,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.53,
2130
+ "grad_norm": 0.1697748750448227,
2131
+ "learning_rate": 2.786030942687805e-05,
2132
+ "loss": 0.0624,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.53,
2137
+ "grad_norm": 0.17153337597846985,
2138
+ "learning_rate": 2.7845891859144088e-05,
2139
+ "loss": 0.035,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.53,
2144
+ "grad_norm": 0.20956017076969147,
2145
+ "learning_rate": 2.7831429637029402e-05,
2146
+ "loss": 0.0468,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.54,
2151
+ "grad_norm": 0.1893073171377182,
2152
+ "learning_rate": 2.7816922810807e-05,
2153
+ "loss": 0.0783,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.54,
2158
+ "grad_norm": 0.24053029716014862,
2159
+ "learning_rate": 2.7802371430904936e-05,
2160
+ "loss": 0.0534,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.54,
2165
+ "grad_norm": 0.15913282334804535,
2166
+ "learning_rate": 2.7787775547906142e-05,
2167
+ "loss": 0.0478,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.54,
2172
+ "grad_norm": 0.3303963840007782,
2173
+ "learning_rate": 2.7773135212548247e-05,
2174
+ "loss": 0.0698,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.54,
2179
+ "grad_norm": 0.2255176603794098,
2180
+ "learning_rate": 2.7758450475723405e-05,
2181
+ "loss": 0.0345,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.54,
2186
+ "grad_norm": 0.20534120500087738,
2187
+ "learning_rate": 2.774372138847812e-05,
2188
+ "loss": 0.0668,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.55,
2193
+ "grad_norm": 0.25963813066482544,
2194
+ "learning_rate": 2.7728948002013054e-05,
2195
+ "loss": 0.0741,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.55,
2200
+ "grad_norm": 0.2108840048313141,
2201
+ "learning_rate": 2.771413036768288e-05,
2202
+ "loss": 0.0691,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.55,
2207
+ "grad_norm": 0.18770939111709595,
2208
+ "learning_rate": 2.769926853699606e-05,
2209
+ "loss": 0.0701,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.55,
2214
+ "grad_norm": 0.1566968858242035,
2215
+ "learning_rate": 2.7684362561614714e-05,
2216
+ "loss": 0.0196,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.55,
2221
+ "grad_norm": 0.3223302364349365,
2222
+ "learning_rate": 2.766941249335439e-05,
2223
+ "loss": 0.0752,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.56,
2228
+ "grad_norm": 0.21899370849132538,
2229
+ "learning_rate": 2.765441838418393e-05,
2230
+ "loss": 0.0703,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.56,
2235
+ "grad_norm": 0.21244989335536957,
2236
+ "learning_rate": 2.7639380286225264e-05,
2237
+ "loss": 0.0672,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.56,
2242
+ "grad_norm": 0.19558708369731903,
2243
+ "learning_rate": 2.7624298251753232e-05,
2244
+ "loss": 0.042,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.56,
2249
+ "grad_norm": 0.2814396917819977,
2250
+ "learning_rate": 2.7609172333195406e-05,
2251
+ "loss": 0.0434,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.56,
2256
+ "grad_norm": 0.2828751504421234,
2257
+ "learning_rate": 2.75940025831319e-05,
2258
+ "loss": 0.047,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "grad_norm": 0.18190258741378784,
2264
+ "learning_rate": 2.7578789054295202e-05,
2265
+ "loss": 0.0619,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.57,
2270
+ "grad_norm": 0.16573399305343628,
2271
+ "learning_rate": 2.7563531799569984e-05,
2272
+ "loss": 0.0681,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.57,
2277
+ "grad_norm": 0.23267892003059387,
2278
+ "learning_rate": 2.75482308719929e-05,
2279
+ "loss": 0.0518,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.57,
2284
+ "grad_norm": 0.21713323891162872,
2285
+ "learning_rate": 2.753288632475244e-05,
2286
+ "loss": 0.0437,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.57,
2291
+ "grad_norm": 0.26459431648254395,
2292
+ "learning_rate": 2.75174982111887e-05,
2293
+ "loss": 0.0616,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.57,
2298
+ "grad_norm": 0.5927810668945312,
2299
+ "learning_rate": 2.7502066584793243e-05,
2300
+ "loss": 0.0931,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "grad_norm": 0.32426661252975464,
2306
+ "learning_rate": 2.7486591499208867e-05,
2307
+ "loss": 0.08,
2308
+ "step": 325
2309
+ },
2310
+ {
2311
+ "epoch": 0.58,
2312
+ "grad_norm": 0.18653956055641174,
2313
+ "learning_rate": 2.7471073008229462e-05,
2314
+ "loss": 0.0679,
2315
+ "step": 326
2316
+ },
2317
+ {
2318
+ "epoch": 0.58,
2319
+ "grad_norm": 0.3730272948741913,
2320
+ "learning_rate": 2.7455511165799783e-05,
2321
+ "loss": 0.0399,
2322
+ "step": 327
2323
+ },
2324
+ {
2325
+ "epoch": 0.58,
2326
+ "grad_norm": 0.2434634417295456,
2327
+ "learning_rate": 2.7439906026015297e-05,
2328
+ "loss": 0.0608,
2329
+ "step": 328
2330
+ },
2331
+ {
2332
+ "epoch": 0.58,
2333
+ "grad_norm": 0.27506130933761597,
2334
+ "learning_rate": 2.742425764312197e-05,
2335
+ "loss": 0.0586,
2336
+ "step": 329
2337
+ },
2338
+ {
2339
+ "epoch": 0.58,
2340
+ "grad_norm": 0.2162889540195465,
2341
+ "learning_rate": 2.7408566071516087e-05,
2342
+ "loss": 0.0587,
2343
+ "step": 330
2344
+ },
2345
+ {
2346
+ "epoch": 0.59,
2347
+ "grad_norm": 0.2727173864841461,
2348
+ "learning_rate": 2.7392831365744074e-05,
2349
+ "loss": 0.0774,
2350
+ "step": 331
2351
+ },
2352
+ {
2353
+ "epoch": 0.59,
2354
+ "grad_norm": 0.2565726339817047,
2355
+ "learning_rate": 2.7377053580502298e-05,
2356
+ "loss": 0.0961,
2357
+ "step": 332
2358
+ },
2359
+ {
2360
+ "epoch": 0.59,
2361
+ "grad_norm": 0.2756386995315552,
2362
+ "learning_rate": 2.7361232770636856e-05,
2363
+ "loss": 0.0465,
2364
+ "step": 333
2365
+ },
2366
+ {
2367
+ "epoch": 0.59,
2368
+ "grad_norm": 0.30874213576316833,
2369
+ "learning_rate": 2.7345368991143433e-05,
2370
+ "loss": 0.0908,
2371
+ "step": 334
2372
+ },
2373
+ {
2374
+ "epoch": 0.59,
2375
+ "grad_norm": 0.21297310292720795,
2376
+ "learning_rate": 2.732946229716707e-05,
2377
+ "loss": 0.0822,
2378
+ "step": 335
2379
+ },
2380
+ {
2381
+ "epoch": 0.59,
2382
+ "grad_norm": 0.21286709606647491,
2383
+ "learning_rate": 2.7313512744001982e-05,
2384
+ "loss": 0.0916,
2385
+ "step": 336
2386
+ },
2387
+ {
2388
+ "epoch": 0.6,
2389
+ "grad_norm": 0.18058332800865173,
2390
+ "learning_rate": 2.7297520387091376e-05,
2391
+ "loss": 0.0459,
2392
+ "step": 337
2393
+ },
2394
+ {
2395
+ "epoch": 0.6,
2396
+ "grad_norm": 0.1574922353029251,
2397
+ "learning_rate": 2.7281485282027252e-05,
2398
+ "loss": 0.048,
2399
+ "step": 338
2400
+ },
2401
+ {
2402
+ "epoch": 0.6,
2403
+ "grad_norm": 0.1783793717622757,
2404
+ "learning_rate": 2.7265407484550206e-05,
2405
+ "loss": 0.0733,
2406
+ "step": 339
2407
+ },
2408
+ {
2409
+ "epoch": 0.6,
2410
+ "grad_norm": 0.17018386721611023,
2411
+ "learning_rate": 2.724928705054924e-05,
2412
+ "loss": 0.064,
2413
+ "step": 340
2414
+ },
2415
+ {
2416
+ "epoch": 0.6,
2417
+ "grad_norm": 0.12130982428789139,
2418
+ "learning_rate": 2.7233124036061575e-05,
2419
+ "loss": 0.0603,
2420
+ "step": 341
2421
+ },
2422
+ {
2423
+ "epoch": 0.61,
2424
+ "grad_norm": 0.19916939735412598,
2425
+ "learning_rate": 2.7216918497272426e-05,
2426
+ "loss": 0.0885,
2427
+ "step": 342
2428
+ },
2429
+ {
2430
+ "epoch": 0.61,
2431
+ "grad_norm": 0.23629699647426605,
2432
+ "learning_rate": 2.7200670490514865e-05,
2433
+ "loss": 0.0696,
2434
+ "step": 343
2435
+ },
2436
+ {
2437
+ "epoch": 0.61,
2438
+ "grad_norm": 0.1870480626821518,
2439
+ "learning_rate": 2.7184380072269558e-05,
2440
+ "loss": 0.0797,
2441
+ "step": 344
2442
+ },
2443
+ {
2444
+ "epoch": 0.61,
2445
+ "grad_norm": 0.22087708115577698,
2446
+ "learning_rate": 2.7168047299164614e-05,
2447
+ "loss": 0.0755,
2448
+ "step": 345
2449
+ },
2450
+ {
2451
+ "epoch": 0.61,
2452
+ "grad_norm": 0.17880262434482574,
2453
+ "learning_rate": 2.7151672227975377e-05,
2454
+ "loss": 0.0582,
2455
+ "step": 346
2456
+ },
2457
+ {
2458
+ "epoch": 0.61,
2459
+ "grad_norm": 0.15626394748687744,
2460
+ "learning_rate": 2.7135254915624213e-05,
2461
+ "loss": 0.072,
2462
+ "step": 347
2463
+ },
2464
+ {
2465
+ "epoch": 0.62,
2466
+ "grad_norm": 0.11785972118377686,
2467
+ "learning_rate": 2.711879541918034e-05,
2468
+ "loss": 0.0515,
2469
+ "step": 348
2470
+ },
2471
+ {
2472
+ "epoch": 0.62,
2473
+ "grad_norm": 0.13664838671684265,
2474
+ "learning_rate": 2.71022937958596e-05,
2475
+ "loss": 0.0542,
2476
+ "step": 349
2477
+ },
2478
+ {
2479
+ "epoch": 0.62,
2480
+ "grad_norm": 0.22781230509281158,
2481
+ "learning_rate": 2.7085750103024296e-05,
2482
+ "loss": 0.1037,
2483
+ "step": 350
2484
+ },
2485
+ {
2486
+ "epoch": 0.62,
2487
+ "grad_norm": 0.1862461417913437,
2488
+ "learning_rate": 2.7069164398182948e-05,
2489
+ "loss": 0.0617,
2490
+ "step": 351
2491
+ },
2492
+ {
2493
+ "epoch": 0.62,
2494
+ "grad_norm": 0.315283864736557,
2495
+ "learning_rate": 2.7052536738990125e-05,
2496
+ "loss": 0.0756,
2497
+ "step": 352
2498
+ },
2499
+ {
2500
+ "epoch": 0.62,
2501
+ "grad_norm": 0.22472089529037476,
2502
+ "learning_rate": 2.7035867183246247e-05,
2503
+ "loss": 0.0792,
2504
+ "step": 353
2505
+ },
2506
+ {
2507
+ "epoch": 0.63,
2508
+ "grad_norm": 0.1294025033712387,
2509
+ "learning_rate": 2.7019155788897357e-05,
2510
+ "loss": 0.0738,
2511
+ "step": 354
2512
+ },
2513
+ {
2514
+ "epoch": 0.63,
2515
+ "grad_norm": 0.2340669184923172,
2516
+ "learning_rate": 2.700240261403494e-05,
2517
+ "loss": 0.0925,
2518
+ "step": 355
2519
+ },
2520
+ {
2521
+ "epoch": 0.63,
2522
+ "grad_norm": 0.27781906723976135,
2523
+ "learning_rate": 2.6985607716895727e-05,
2524
+ "loss": 0.0793,
2525
+ "step": 356
2526
+ },
2527
+ {
2528
+ "epoch": 0.63,
2529
+ "grad_norm": 0.18572118878364563,
2530
+ "learning_rate": 2.6968771155861464e-05,
2531
+ "loss": 0.065,
2532
+ "step": 357
2533
+ },
2534
+ {
2535
+ "epoch": 0.63,
2536
+ "grad_norm": 0.2246127426624298,
2537
+ "learning_rate": 2.695189298945875e-05,
2538
+ "loss": 0.0825,
2539
+ "step": 358
2540
+ },
2541
+ {
2542
+ "epoch": 0.64,
2543
+ "grad_norm": 0.23202070593833923,
2544
+ "learning_rate": 2.6934973276358792e-05,
2545
+ "loss": 0.0598,
2546
+ "step": 359
2547
+ },
2548
+ {
2549
+ "epoch": 0.64,
2550
+ "grad_norm": 0.16124321520328522,
2551
+ "learning_rate": 2.6918012075377226e-05,
2552
+ "loss": 0.0825,
2553
+ "step": 360
2554
+ },
2555
+ {
2556
+ "epoch": 0.64,
2557
+ "grad_norm": 0.15348608791828156,
2558
+ "learning_rate": 2.6901009445473912e-05,
2559
+ "loss": 0.0442,
2560
+ "step": 361
2561
+ },
2562
+ {
2563
+ "epoch": 0.64,
2564
+ "grad_norm": 0.18639832735061646,
2565
+ "learning_rate": 2.6883965445752714e-05,
2566
+ "loss": 0.0699,
2567
+ "step": 362
2568
+ },
2569
+ {
2570
+ "epoch": 0.64,
2571
+ "grad_norm": 0.2920565605163574,
2572
+ "learning_rate": 2.6866880135461314e-05,
2573
+ "loss": 0.0798,
2574
+ "step": 363
2575
+ },
2576
+ {
2577
+ "epoch": 0.64,
2578
+ "grad_norm": 0.16075679659843445,
2579
+ "learning_rate": 2.684975357399099e-05,
2580
+ "loss": 0.0691,
2581
+ "step": 364
2582
+ },
2583
+ {
2584
+ "epoch": 0.65,
2585
+ "grad_norm": 0.17678283154964447,
2586
+ "learning_rate": 2.683258582087641e-05,
2587
+ "loss": 0.0386,
2588
+ "step": 365
2589
+ },
2590
+ {
2591
+ "epoch": 0.65,
2592
+ "grad_norm": 0.4795132875442505,
2593
+ "learning_rate": 2.681537693579545e-05,
2594
+ "loss": 0.0988,
2595
+ "step": 366
2596
+ },
2597
+ {
2598
+ "epoch": 0.65,
2599
+ "grad_norm": 0.18269479274749756,
2600
+ "learning_rate": 2.6798126978568942e-05,
2601
+ "loss": 0.074,
2602
+ "step": 367
2603
+ },
2604
+ {
2605
+ "epoch": 0.65,
2606
+ "grad_norm": 0.2764766812324524,
2607
+ "learning_rate": 2.6780836009160514e-05,
2608
+ "loss": 0.0565,
2609
+ "step": 368
2610
+ },
2611
+ {
2612
+ "epoch": 0.65,
2613
+ "grad_norm": 0.19089283049106598,
2614
+ "learning_rate": 2.6763504087676346e-05,
2615
+ "loss": 0.0389,
2616
+ "step": 369
2617
+ },
2618
+ {
2619
+ "epoch": 0.65,
2620
+ "grad_norm": 0.15806300938129425,
2621
+ "learning_rate": 2.674613127436498e-05,
2622
+ "loss": 0.0482,
2623
+ "step": 370
2624
+ },
2625
+ {
2626
+ "epoch": 0.66,
2627
+ "grad_norm": 0.2809430658817291,
2628
+ "learning_rate": 2.6728717629617093e-05,
2629
+ "loss": 0.0429,
2630
+ "step": 371
2631
+ },
2632
+ {
2633
+ "epoch": 0.66,
2634
+ "grad_norm": 0.12930545210838318,
2635
+ "learning_rate": 2.671126321396532e-05,
2636
+ "loss": 0.0255,
2637
+ "step": 372
2638
+ },
2639
+ {
2640
+ "epoch": 0.66,
2641
+ "grad_norm": 0.17408722639083862,
2642
+ "learning_rate": 2.6693768088083994e-05,
2643
+ "loss": 0.0703,
2644
+ "step": 373
2645
+ },
2646
+ {
2647
+ "epoch": 0.66,
2648
+ "grad_norm": 0.3387722671031952,
2649
+ "learning_rate": 2.6676232312788998e-05,
2650
+ "loss": 0.0569,
2651
+ "step": 374
2652
+ },
2653
+ {
2654
+ "epoch": 0.66,
2655
+ "grad_norm": 0.25352975726127625,
2656
+ "learning_rate": 2.6658655949037482e-05,
2657
+ "loss": 0.0914,
2658
+ "step": 375
2659
+ },
2660
+ {
2661
+ "epoch": 0.67,
2662
+ "grad_norm": 0.3007981777191162,
2663
+ "learning_rate": 2.6641039057927724e-05,
2664
+ "loss": 0.0502,
2665
+ "step": 376
2666
+ },
2667
+ {
2668
+ "epoch": 0.67,
2669
+ "grad_norm": 0.20817789435386658,
2670
+ "learning_rate": 2.662338170069885e-05,
2671
+ "loss": 0.0408,
2672
+ "step": 377
2673
+ },
2674
+ {
2675
+ "epoch": 0.67,
2676
+ "grad_norm": 0.15569907426834106,
2677
+ "learning_rate": 2.6605683938730666e-05,
2678
+ "loss": 0.029,
2679
+ "step": 378
2680
+ },
2681
+ {
2682
+ "epoch": 0.67,
2683
+ "grad_norm": 0.25259971618652344,
2684
+ "learning_rate": 2.6587945833543432e-05,
2685
+ "loss": 0.0336,
2686
+ "step": 379
2687
+ },
2688
+ {
2689
+ "epoch": 0.67,
2690
+ "grad_norm": 0.13589264452457428,
2691
+ "learning_rate": 2.6570167446797657e-05,
2692
+ "loss": 0.0218,
2693
+ "step": 380
2694
+ },
2695
+ {
2696
+ "epoch": 0.67,
2697
+ "grad_norm": 0.34168577194213867,
2698
+ "learning_rate": 2.6552348840293856e-05,
2699
+ "loss": 0.0882,
2700
+ "step": 381
2701
+ },
2702
+ {
2703
+ "epoch": 0.68,
2704
+ "grad_norm": 0.26590269804000854,
2705
+ "learning_rate": 2.6534490075972368e-05,
2706
+ "loss": 0.0576,
2707
+ "step": 382
2708
+ },
2709
+ {
2710
+ "epoch": 0.68,
2711
+ "grad_norm": 0.2801959812641144,
2712
+ "learning_rate": 2.6516591215913118e-05,
2713
+ "loss": 0.0586,
2714
+ "step": 383
2715
+ },
2716
+ {
2717
+ "epoch": 0.68,
2718
+ "grad_norm": 0.3427751660346985,
2719
+ "learning_rate": 2.6498652322335416e-05,
2720
+ "loss": 0.0575,
2721
+ "step": 384
2722
+ },
2723
+ {
2724
+ "epoch": 0.68,
2725
+ "grad_norm": 0.5352123975753784,
2726
+ "learning_rate": 2.6480673457597737e-05,
2727
+ "loss": 0.0915,
2728
+ "step": 385
2729
+ },
2730
+ {
2731
+ "epoch": 0.68,
2732
+ "grad_norm": 0.45933809876441956,
2733
+ "learning_rate": 2.646265468419749e-05,
2734
+ "loss": 0.0865,
2735
+ "step": 386
2736
+ },
2737
+ {
2738
+ "epoch": 0.68,
2739
+ "grad_norm": 0.14740170538425446,
2740
+ "learning_rate": 2.6444596064770837e-05,
2741
+ "loss": 0.0447,
2742
+ "step": 387
2743
+ },
2744
+ {
2745
+ "epoch": 0.69,
2746
+ "grad_norm": 0.18046963214874268,
2747
+ "learning_rate": 2.6426497662092424e-05,
2748
+ "loss": 0.0302,
2749
+ "step": 388
2750
+ },
2751
+ {
2752
+ "epoch": 0.69,
2753
+ "grad_norm": 0.2271748036146164,
2754
+ "learning_rate": 2.6408359539075204e-05,
2755
+ "loss": 0.067,
2756
+ "step": 389
2757
+ },
2758
+ {
2759
+ "epoch": 0.69,
2760
+ "grad_norm": 0.345716267824173,
2761
+ "learning_rate": 2.6390181758770208e-05,
2762
+ "loss": 0.0461,
2763
+ "step": 390
2764
+ },
2765
+ {
2766
+ "epoch": 0.69,
2767
+ "grad_norm": 0.2197301983833313,
2768
+ "learning_rate": 2.6371964384366305e-05,
2769
+ "loss": 0.0252,
2770
+ "step": 391
2771
+ },
2772
+ {
2773
+ "epoch": 0.69,
2774
+ "grad_norm": 0.2628111243247986,
2775
+ "learning_rate": 2.6353707479190022e-05,
2776
+ "loss": 0.0616,
2777
+ "step": 392
2778
+ },
2779
+ {
2780
+ "epoch": 0.7,
2781
+ "grad_norm": 0.41908586025238037,
2782
+ "learning_rate": 2.6335411106705283e-05,
2783
+ "loss": 0.0599,
2784
+ "step": 393
2785
+ },
2786
+ {
2787
+ "epoch": 0.7,
2788
+ "grad_norm": 0.13220524787902832,
2789
+ "learning_rate": 2.6317075330513212e-05,
2790
+ "loss": 0.0116,
2791
+ "step": 394
2792
+ },
2793
+ {
2794
+ "epoch": 0.7,
2795
+ "grad_norm": 0.21840068697929382,
2796
+ "learning_rate": 2.6298700214351922e-05,
2797
+ "loss": 0.0413,
2798
+ "step": 395
2799
+ },
2800
+ {
2801
+ "epoch": 0.7,
2802
+ "grad_norm": 0.3715525269508362,
2803
+ "learning_rate": 2.628028582209625e-05,
2804
+ "loss": 0.0643,
2805
+ "step": 396
2806
+ },
2807
+ {
2808
+ "epoch": 0.7,
2809
+ "grad_norm": 0.21229352056980133,
2810
+ "learning_rate": 2.626183221775758e-05,
2811
+ "loss": 0.0369,
2812
+ "step": 397
2813
+ },
2814
+ {
2815
+ "epoch": 0.7,
2816
+ "grad_norm": 0.3171239495277405,
2817
+ "learning_rate": 2.6243339465483605e-05,
2818
+ "loss": 0.0712,
2819
+ "step": 398
2820
+ },
2821
+ {
2822
+ "epoch": 0.71,
2823
+ "grad_norm": 0.33259809017181396,
2824
+ "learning_rate": 2.6224807629558094e-05,
2825
+ "loss": 0.1066,
2826
+ "step": 399
2827
+ },
2828
+ {
2829
+ "epoch": 0.71,
2830
+ "grad_norm": 0.14465388655662537,
2831
+ "learning_rate": 2.6206236774400684e-05,
2832
+ "loss": 0.034,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.71,
2837
+ "grad_norm": 0.5533297061920166,
2838
+ "learning_rate": 2.6187626964566644e-05,
2839
+ "loss": 0.1046,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.71,
2844
+ "grad_norm": 0.17661869525909424,
2845
+ "learning_rate": 2.6168978264746663e-05,
2846
+ "loss": 0.0322,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.71,
2851
+ "grad_norm": 0.19023488461971283,
2852
+ "learning_rate": 2.615029073976661e-05,
2853
+ "loss": 0.0493,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.71,
2858
+ "grad_norm": 0.1495324969291687,
2859
+ "learning_rate": 2.6131564454587316e-05,
2860
+ "loss": 0.0404,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.72,
2865
+ "grad_norm": 0.20712687075138092,
2866
+ "learning_rate": 2.611279947430436e-05,
2867
+ "loss": 0.0472,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.72,
2872
+ "grad_norm": 0.233810156583786,
2873
+ "learning_rate": 2.609399586414782e-05,
2874
+ "loss": 0.0424,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.72,
2879
+ "grad_norm": 0.14824284613132477,
2880
+ "learning_rate": 2.607515368948206e-05,
2881
+ "loss": 0.0318,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.72,
2886
+ "grad_norm": 0.3361953794956207,
2887
+ "learning_rate": 2.60562730158055e-05,
2888
+ "loss": 0.0763,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.72,
2893
+ "grad_norm": 0.2170048952102661,
2894
+ "learning_rate": 2.6037353908750394e-05,
2895
+ "loss": 0.0643,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.73,
2900
+ "grad_norm": 0.18919886648654938,
2901
+ "learning_rate": 2.601839643408259e-05,
2902
+ "loss": 0.0583,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.73,
2907
+ "grad_norm": 0.42277276515960693,
2908
+ "learning_rate": 2.5999400657701314e-05,
2909
+ "loss": 0.0698,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.73,
2914
+ "grad_norm": 0.25986483693122864,
2915
+ "learning_rate": 2.598036664563893e-05,
2916
+ "loss": 0.041,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.73,
2921
+ "grad_norm": 0.2869338095188141,
2922
+ "learning_rate": 2.596129446406072e-05,
2923
+ "loss": 0.0503,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.73,
2928
+ "grad_norm": 0.41842973232269287,
2929
+ "learning_rate": 2.594218417926464e-05,
2930
+ "loss": 0.0786,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.73,
2935
+ "grad_norm": 0.4030296504497528,
2936
+ "learning_rate": 2.592303585768111e-05,
2937
+ "loss": 0.067,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.74,
2942
+ "grad_norm": 0.31492769718170166,
2943
+ "learning_rate": 2.590384956587277e-05,
2944
+ "loss": 0.0479,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.74,
2949
+ "grad_norm": 0.5827561020851135,
2950
+ "learning_rate": 2.5884625370534242e-05,
2951
+ "loss": 0.1315,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.74,
2956
+ "grad_norm": 0.30939584970474243,
2957
+ "learning_rate": 2.5865363338491916e-05,
2958
+ "loss": 0.0759,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.74,
2963
+ "grad_norm": 0.20597557723522186,
2964
+ "learning_rate": 2.5846063536703706e-05,
2965
+ "loss": 0.0739,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.74,
2970
+ "grad_norm": 0.31797170639038086,
2971
+ "learning_rate": 2.582672603225882e-05,
2972
+ "loss": 0.0892,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.74,
2977
+ "grad_norm": 0.4155197739601135,
2978
+ "learning_rate": 2.5807350892377517e-05,
2979
+ "loss": 0.13,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.75,
2984
+ "grad_norm": 0.14263832569122314,
2985
+ "learning_rate": 2.5787938184410902e-05,
2986
+ "loss": 0.0489,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.75,
2991
+ "grad_norm": 0.1489766389131546,
2992
+ "learning_rate": 2.5768487975840655e-05,
2993
+ "loss": 0.0638,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.75,
2998
+ "grad_norm": 0.30038881301879883,
2999
+ "learning_rate": 2.5749000334278825e-05,
3000
+ "loss": 0.0455,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.75,
3005
+ "grad_norm": 0.2359144389629364,
3006
+ "learning_rate": 2.572947532746758e-05,
3007
+ "loss": 0.0822,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.75,
3012
+ "grad_norm": 0.16958381235599518,
3013
+ "learning_rate": 2.570991302327897e-05,
3014
+ "loss": 0.0454,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.75,
3019
+ "eval_loss": 0.0626850351691246,
3020
+ "eval_runtime": 14.7469,
3021
+ "eval_samples_per_second": 32.278,
3022
+ "eval_steps_per_second": 8.07,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.76,
3027
+ "grad_norm": 0.40241333842277527,
3028
+ "learning_rate": 2.569031348971471e-05,
3029
+ "loss": 0.0926,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.76,
3034
+ "grad_norm": 0.2126995176076889,
3035
+ "learning_rate": 2.5670676794905915e-05,
3036
+ "loss": 0.085,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 0.76,
3041
+ "grad_norm": 0.1960797905921936,
3042
+ "learning_rate": 2.5651003007112892e-05,
3043
+ "loss": 0.0853,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 0.76,
3048
+ "grad_norm": 0.13784633576869965,
3049
+ "learning_rate": 2.5631292194724883e-05,
3050
+ "loss": 0.0453,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 0.76,
3055
+ "grad_norm": 0.14578142762184143,
3056
+ "learning_rate": 2.561154442625983e-05,
3057
+ "loss": 0.0765,
3058
+ "step": 431
3059
+ },
3060
+ {
3061
+ "epoch": 0.76,
3062
+ "grad_norm": 0.14827878773212433,
3063
+ "learning_rate": 2.559175977036415e-05,
3064
+ "loss": 0.0594,
3065
+ "step": 432
3066
+ },
3067
+ {
3068
+ "epoch": 0.77,
3069
+ "grad_norm": 0.19840463995933533,
3070
+ "learning_rate": 2.5571938295812476e-05,
3071
+ "loss": 0.0692,
3072
+ "step": 433
3073
+ },
3074
+ {
3075
+ "epoch": 0.77,
3076
+ "grad_norm": 0.11538412421941757,
3077
+ "learning_rate": 2.555208007150743e-05,
3078
+ "loss": 0.067,
3079
+ "step": 434
3080
+ },
3081
+ {
3082
+ "epoch": 0.77,
3083
+ "grad_norm": 0.3484029173851013,
3084
+ "learning_rate": 2.553218516647939e-05,
3085
+ "loss": 0.0799,
3086
+ "step": 435
3087
+ },
3088
+ {
3089
+ "epoch": 0.77,
3090
+ "grad_norm": 0.20653250813484192,
3091
+ "learning_rate": 2.5512253649886237e-05,
3092
+ "loss": 0.0741,
3093
+ "step": 436
3094
+ },
3095
+ {
3096
+ "epoch": 0.77,
3097
+ "grad_norm": 0.18202582001686096,
3098
+ "learning_rate": 2.5492285591013118e-05,
3099
+ "loss": 0.0636,
3100
+ "step": 437
3101
+ },
3102
+ {
3103
+ "epoch": 0.77,
3104
+ "grad_norm": 0.17838889360427856,
3105
+ "learning_rate": 2.5472281059272213e-05,
3106
+ "loss": 0.067,
3107
+ "step": 438
3108
+ },
3109
+ {
3110
+ "epoch": 0.78,
3111
+ "grad_norm": 0.2804567217826843,
3112
+ "learning_rate": 2.5452240124202477e-05,
3113
+ "loss": 0.0795,
3114
+ "step": 439
3115
+ },
3116
+ {
3117
+ "epoch": 0.78,
3118
+ "grad_norm": 0.1692652553319931,
3119
+ "learning_rate": 2.5432162855469422e-05,
3120
+ "loss": 0.0722,
3121
+ "step": 440
3122
+ },
3123
+ {
3124
+ "epoch": 0.78,
3125
+ "grad_norm": 0.1247120052576065,
3126
+ "learning_rate": 2.5412049322864847e-05,
3127
+ "loss": 0.0332,
3128
+ "step": 441
3129
+ },
3130
+ {
3131
+ "epoch": 0.78,
3132
+ "grad_norm": 0.1898394376039505,
3133
+ "learning_rate": 2.539189959630662e-05,
3134
+ "loss": 0.055,
3135
+ "step": 442
3136
+ },
3137
+ {
3138
+ "epoch": 0.78,
3139
+ "grad_norm": 0.20923753082752228,
3140
+ "learning_rate": 2.537171374583843e-05,
3141
+ "loss": 0.0728,
3142
+ "step": 443
3143
+ },
3144
+ {
3145
+ "epoch": 0.79,
3146
+ "grad_norm": 0.1551828235387802,
3147
+ "learning_rate": 2.535149184162952e-05,
3148
+ "loss": 0.0629,
3149
+ "step": 444
3150
+ },
3151
+ {
3152
+ "epoch": 0.79,
3153
+ "grad_norm": 0.1762448400259018,
3154
+ "learning_rate": 2.533123395397448e-05,
3155
+ "loss": 0.0673,
3156
+ "step": 445
3157
+ },
3158
+ {
3159
+ "epoch": 0.79,
3160
+ "grad_norm": 0.12544862926006317,
3161
+ "learning_rate": 2.5310940153292978e-05,
3162
+ "loss": 0.0311,
3163
+ "step": 446
3164
+ },
3165
+ {
3166
+ "epoch": 0.79,
3167
+ "grad_norm": 0.15880614519119263,
3168
+ "learning_rate": 2.5290610510129518e-05,
3169
+ "loss": 0.0402,
3170
+ "step": 447
3171
+ },
3172
+ {
3173
+ "epoch": 0.79,
3174
+ "grad_norm": 0.17256905138492584,
3175
+ "learning_rate": 2.5270245095153198e-05,
3176
+ "loss": 0.0633,
3177
+ "step": 448
3178
+ },
3179
+ {
3180
+ "epoch": 0.79,
3181
+ "grad_norm": 0.1660386472940445,
3182
+ "learning_rate": 2.524984397915747e-05,
3183
+ "loss": 0.077,
3184
+ "step": 449
3185
+ },
3186
+ {
3187
+ "epoch": 0.8,
3188
+ "grad_norm": 0.13268114626407623,
3189
+ "learning_rate": 2.5229407233059887e-05,
3190
+ "loss": 0.0426,
3191
+ "step": 450
3192
+ },
3193
+ {
3194
+ "epoch": 0.8,
3195
+ "grad_norm": 0.2337772697210312,
3196
+ "learning_rate": 2.5208934927901857e-05,
3197
+ "loss": 0.0836,
3198
+ "step": 451
3199
+ },
3200
+ {
3201
+ "epoch": 0.8,
3202
+ "grad_norm": 0.13446028530597687,
3203
+ "learning_rate": 2.5188427134848395e-05,
3204
+ "loss": 0.0382,
3205
+ "step": 452
3206
+ },
3207
+ {
3208
+ "epoch": 0.8,
3209
+ "grad_norm": 0.18553531169891357,
3210
+ "learning_rate": 2.5167883925187878e-05,
3211
+ "loss": 0.0548,
3212
+ "step": 453
3213
+ },
3214
+ {
3215
+ "epoch": 0.8,
3216
+ "grad_norm": 0.25128498673439026,
3217
+ "learning_rate": 2.51473053703318e-05,
3218
+ "loss": 0.0766,
3219
+ "step": 454
3220
+ },
3221
+ {
3222
+ "epoch": 0.8,
3223
+ "grad_norm": 0.1686338186264038,
3224
+ "learning_rate": 2.5126691541814518e-05,
3225
+ "loss": 0.0434,
3226
+ "step": 455
3227
+ },
3228
+ {
3229
+ "epoch": 0.81,
3230
+ "grad_norm": 0.18022535741329193,
3231
+ "learning_rate": 2.510604251129301e-05,
3232
+ "loss": 0.0688,
3233
+ "step": 456
3234
+ },
3235
+ {
3236
+ "epoch": 0.81,
3237
+ "grad_norm": 0.17681004106998444,
3238
+ "learning_rate": 2.5085358350546612e-05,
3239
+ "loss": 0.0533,
3240
+ "step": 457
3241
+ },
3242
+ {
3243
+ "epoch": 0.81,
3244
+ "grad_norm": 0.2677585482597351,
3245
+ "learning_rate": 2.506463913147679e-05,
3246
+ "loss": 0.0818,
3247
+ "step": 458
3248
+ },
3249
+ {
3250
+ "epoch": 0.81,
3251
+ "grad_norm": 0.5509142875671387,
3252
+ "learning_rate": 2.5043884926106873e-05,
3253
+ "loss": 0.1005,
3254
+ "step": 459
3255
+ },
3256
+ {
3257
+ "epoch": 0.81,
3258
+ "grad_norm": 0.14625947177410126,
3259
+ "learning_rate": 2.5023095806581802e-05,
3260
+ "loss": 0.0426,
3261
+ "step": 460
3262
+ },
3263
+ {
3264
+ "epoch": 0.82,
3265
+ "grad_norm": 0.3046765923500061,
3266
+ "learning_rate": 2.5002271845167896e-05,
3267
+ "loss": 0.0515,
3268
+ "step": 461
3269
+ },
3270
+ {
3271
+ "epoch": 0.82,
3272
+ "grad_norm": 0.16383983194828033,
3273
+ "learning_rate": 2.4981413114252588e-05,
3274
+ "loss": 0.0455,
3275
+ "step": 462
3276
+ },
3277
+ {
3278
+ "epoch": 0.82,
3279
+ "grad_norm": 0.3099363148212433,
3280
+ "learning_rate": 2.4960519686344168e-05,
3281
+ "loss": 0.0924,
3282
+ "step": 463
3283
+ },
3284
+ {
3285
+ "epoch": 0.82,
3286
+ "grad_norm": 0.25622445344924927,
3287
+ "learning_rate": 2.4939591634071544e-05,
3288
+ "loss": 0.0737,
3289
+ "step": 464
3290
+ },
3291
+ {
3292
+ "epoch": 0.82,
3293
+ "grad_norm": 0.21525193750858307,
3294
+ "learning_rate": 2.491862903018398e-05,
3295
+ "loss": 0.0816,
3296
+ "step": 465
3297
+ },
3298
+ {
3299
+ "epoch": 0.82,
3300
+ "grad_norm": 0.18544378876686096,
3301
+ "learning_rate": 2.4897631947550857e-05,
3302
+ "loss": 0.0453,
3303
+ "step": 466
3304
+ },
3305
+ {
3306
+ "epoch": 0.83,
3307
+ "grad_norm": 0.15406207740306854,
3308
+ "learning_rate": 2.4876600459161397e-05,
3309
+ "loss": 0.0477,
3310
+ "step": 467
3311
+ },
3312
+ {
3313
+ "epoch": 0.83,
3314
+ "grad_norm": 0.21517229080200195,
3315
+ "learning_rate": 2.4855534638124427e-05,
3316
+ "loss": 0.0467,
3317
+ "step": 468
3318
+ },
3319
+ {
3320
+ "epoch": 0.83,
3321
+ "grad_norm": 0.27017998695373535,
3322
+ "learning_rate": 2.4834434557668126e-05,
3323
+ "loss": 0.0593,
3324
+ "step": 469
3325
+ },
3326
+ {
3327
+ "epoch": 0.83,
3328
+ "grad_norm": 0.24762241542339325,
3329
+ "learning_rate": 2.4813300291139754e-05,
3330
+ "loss": 0.0587,
3331
+ "step": 470
3332
+ },
3333
+ {
3334
+ "epoch": 0.83,
3335
+ "grad_norm": 0.29878756403923035,
3336
+ "learning_rate": 2.4792131912005407e-05,
3337
+ "loss": 0.0635,
3338
+ "step": 471
3339
+ },
3340
+ {
3341
+ "epoch": 0.84,
3342
+ "grad_norm": 0.18735036253929138,
3343
+ "learning_rate": 2.4770929493849773e-05,
3344
+ "loss": 0.0312,
3345
+ "step": 472
3346
+ },
3347
+ {
3348
+ "epoch": 0.84,
3349
+ "grad_norm": 0.27927571535110474,
3350
+ "learning_rate": 2.4749693110375856e-05,
3351
+ "loss": 0.0668,
3352
+ "step": 473
3353
+ },
3354
+ {
3355
+ "epoch": 0.84,
3356
+ "grad_norm": 0.19749711453914642,
3357
+ "learning_rate": 2.4728422835404735e-05,
3358
+ "loss": 0.0321,
3359
+ "step": 474
3360
+ },
3361
+ {
3362
+ "epoch": 0.84,
3363
+ "grad_norm": 0.12730471789836884,
3364
+ "learning_rate": 2.4707118742875293e-05,
3365
+ "loss": 0.0183,
3366
+ "step": 475
3367
+ },
3368
+ {
3369
+ "epoch": 0.84,
3370
+ "grad_norm": 0.2711328864097595,
3371
+ "learning_rate": 2.4685780906843975e-05,
3372
+ "loss": 0.0677,
3373
+ "step": 476
3374
+ },
3375
+ {
3376
+ "epoch": 0.84,
3377
+ "grad_norm": 0.26742562651634216,
3378
+ "learning_rate": 2.4664409401484522e-05,
3379
+ "loss": 0.0617,
3380
+ "step": 477
3381
+ },
3382
+ {
3383
+ "epoch": 0.85,
3384
+ "grad_norm": 0.5431042313575745,
3385
+ "learning_rate": 2.4643004301087716e-05,
3386
+ "loss": 0.1233,
3387
+ "step": 478
3388
+ },
3389
+ {
3390
+ "epoch": 0.85,
3391
+ "grad_norm": 0.13498014211654663,
3392
+ "learning_rate": 2.462156568006112e-05,
3393
+ "loss": 0.0268,
3394
+ "step": 479
3395
+ },
3396
+ {
3397
+ "epoch": 0.85,
3398
+ "grad_norm": 0.22139033675193787,
3399
+ "learning_rate": 2.4600093612928812e-05,
3400
+ "loss": 0.0493,
3401
+ "step": 480
3402
+ },
3403
+ {
3404
+ "epoch": 0.85,
3405
+ "grad_norm": 0.15270984172821045,
3406
+ "learning_rate": 2.457858817433115e-05,
3407
+ "loss": 0.0255,
3408
+ "step": 481
3409
+ },
3410
+ {
3411
+ "epoch": 0.85,
3412
+ "grad_norm": 0.158059224486351,
3413
+ "learning_rate": 2.4557049439024488e-05,
3414
+ "loss": 0.0574,
3415
+ "step": 482
3416
+ },
3417
+ {
3418
+ "epoch": 0.85,
3419
+ "grad_norm": 0.17642827332019806,
3420
+ "learning_rate": 2.4535477481880923e-05,
3421
+ "loss": 0.0351,
3422
+ "step": 483
3423
+ },
3424
+ {
3425
+ "epoch": 0.86,
3426
+ "grad_norm": 0.1525094211101532,
3427
+ "learning_rate": 2.451387237788804e-05,
3428
+ "loss": 0.0242,
3429
+ "step": 484
3430
+ },
3431
+ {
3432
+ "epoch": 0.86,
3433
+ "grad_norm": 0.21704228222370148,
3434
+ "learning_rate": 2.4492234202148643e-05,
3435
+ "loss": 0.0582,
3436
+ "step": 485
3437
+ },
3438
+ {
3439
+ "epoch": 0.86,
3440
+ "grad_norm": 0.2657334804534912,
3441
+ "learning_rate": 2.44705630298805e-05,
3442
+ "loss": 0.0458,
3443
+ "step": 486
3444
+ },
3445
+ {
3446
+ "epoch": 0.86,
3447
+ "grad_norm": 0.23600801825523376,
3448
+ "learning_rate": 2.4448858936416093e-05,
3449
+ "loss": 0.0447,
3450
+ "step": 487
3451
+ },
3452
+ {
3453
+ "epoch": 0.86,
3454
+ "grad_norm": 0.20092691481113434,
3455
+ "learning_rate": 2.442712199720232e-05,
3456
+ "loss": 0.0462,
3457
+ "step": 488
3458
+ },
3459
+ {
3460
+ "epoch": 0.87,
3461
+ "grad_norm": 0.23618610203266144,
3462
+ "learning_rate": 2.4405352287800268e-05,
3463
+ "loss": 0.0383,
3464
+ "step": 489
3465
+ },
3466
+ {
3467
+ "epoch": 0.87,
3468
+ "grad_norm": 0.18307435512542725,
3469
+ "learning_rate": 2.4383549883884954e-05,
3470
+ "loss": 0.0312,
3471
+ "step": 490
3472
+ },
3473
+ {
3474
+ "epoch": 0.87,
3475
+ "grad_norm": 0.20053623616695404,
3476
+ "learning_rate": 2.4361714861245017e-05,
3477
+ "loss": 0.0352,
3478
+ "step": 491
3479
+ },
3480
+ {
3481
+ "epoch": 0.87,
3482
+ "grad_norm": 0.23183472454547882,
3483
+ "learning_rate": 2.4339847295782508e-05,
3484
+ "loss": 0.0445,
3485
+ "step": 492
3486
+ },
3487
+ {
3488
+ "epoch": 0.87,
3489
+ "grad_norm": 0.554999589920044,
3490
+ "learning_rate": 2.431794726351258e-05,
3491
+ "loss": 0.1143,
3492
+ "step": 493
3493
+ },
3494
+ {
3495
+ "epoch": 0.87,
3496
+ "grad_norm": 0.3061026334762573,
3497
+ "learning_rate": 2.4296014840563266e-05,
3498
+ "loss": 0.0488,
3499
+ "step": 494
3500
+ },
3501
+ {
3502
+ "epoch": 0.88,
3503
+ "grad_norm": 0.23472747206687927,
3504
+ "learning_rate": 2.4274050103175195e-05,
3505
+ "loss": 0.0549,
3506
+ "step": 495
3507
+ },
3508
+ {
3509
+ "epoch": 0.88,
3510
+ "grad_norm": 0.36875736713409424,
3511
+ "learning_rate": 2.42520531277013e-05,
3512
+ "loss": 0.0472,
3513
+ "step": 496
3514
+ },
3515
+ {
3516
+ "epoch": 0.88,
3517
+ "grad_norm": 0.3055475950241089,
3518
+ "learning_rate": 2.423002399060661e-05,
3519
+ "loss": 0.0485,
3520
+ "step": 497
3521
+ },
3522
+ {
3523
+ "epoch": 0.88,
3524
+ "grad_norm": 0.33722659945487976,
3525
+ "learning_rate": 2.420796276846793e-05,
3526
+ "loss": 0.1004,
3527
+ "step": 498
3528
+ },
3529
+ {
3530
+ "epoch": 0.88,
3531
+ "grad_norm": 0.3110818862915039,
3532
+ "learning_rate": 2.4185869537973613e-05,
3533
+ "loss": 0.0893,
3534
+ "step": 499
3535
+ },
3536
+ {
3537
+ "epoch": 0.88,
3538
+ "grad_norm": 0.5243550539016724,
3539
+ "learning_rate": 2.4163744375923272e-05,
3540
+ "loss": 0.0742,
3541
+ "step": 500
3542
+ },
3543
+ {
3544
+ "epoch": 0.89,
3545
+ "grad_norm": 0.18637774884700775,
3546
+ "learning_rate": 2.4141587359227514e-05,
3547
+ "loss": 0.0453,
3548
+ "step": 501
3549
+ },
3550
+ {
3551
+ "epoch": 0.89,
3552
+ "grad_norm": 0.11755359172821045,
3553
+ "learning_rate": 2.4119398564907685e-05,
3554
+ "loss": 0.0236,
3555
+ "step": 502
3556
+ },
3557
+ {
3558
+ "epoch": 0.89,
3559
+ "grad_norm": 0.145331472158432,
3560
+ "learning_rate": 2.4097178070095602e-05,
3561
+ "loss": 0.0432,
3562
+ "step": 503
3563
+ },
3564
+ {
3565
+ "epoch": 0.89,
3566
+ "grad_norm": 0.1340416669845581,
3567
+ "learning_rate": 2.4074925952033263e-05,
3568
+ "loss": 0.0339,
3569
+ "step": 504
3570
+ },
3571
+ {
3572
+ "epoch": 0.89,
3573
+ "grad_norm": 0.2009749859571457,
3574
+ "learning_rate": 2.4052642288072594e-05,
3575
+ "loss": 0.033,
3576
+ "step": 505
3577
+ },
3578
+ {
3579
+ "epoch": 0.9,
3580
+ "grad_norm": 0.25946885347366333,
3581
+ "learning_rate": 2.4030327155675192e-05,
3582
+ "loss": 0.0618,
3583
+ "step": 506
3584
+ },
3585
+ {
3586
+ "epoch": 0.9,
3587
+ "grad_norm": 0.338084876537323,
3588
+ "learning_rate": 2.4007980632412034e-05,
3589
+ "loss": 0.076,
3590
+ "step": 507
3591
+ },
3592
+ {
3593
+ "epoch": 0.9,
3594
+ "grad_norm": 0.16105656325817108,
3595
+ "learning_rate": 2.398560279596323e-05,
3596
+ "loss": 0.055,
3597
+ "step": 508
3598
+ },
3599
+ {
3600
+ "epoch": 0.9,
3601
+ "grad_norm": 0.2381068766117096,
3602
+ "learning_rate": 2.3963193724117715e-05,
3603
+ "loss": 0.0847,
3604
+ "step": 509
3605
+ },
3606
+ {
3607
+ "epoch": 0.9,
3608
+ "grad_norm": 0.148463174700737,
3609
+ "learning_rate": 2.394075349477302e-05,
3610
+ "loss": 0.0404,
3611
+ "step": 510
3612
+ },
3613
+ {
3614
+ "epoch": 0.9,
3615
+ "grad_norm": 0.359811007976532,
3616
+ "learning_rate": 2.3918282185934986e-05,
3617
+ "loss": 0.0508,
3618
+ "step": 511
3619
+ },
3620
+ {
3621
+ "epoch": 0.91,
3622
+ "grad_norm": 0.2325233817100525,
3623
+ "learning_rate": 2.3895779875717486e-05,
3624
+ "loss": 0.0594,
3625
+ "step": 512
3626
+ },
3627
+ {
3628
+ "epoch": 0.91,
3629
+ "grad_norm": 0.18048043549060822,
3630
+ "learning_rate": 2.3873246642342163e-05,
3631
+ "loss": 0.0267,
3632
+ "step": 513
3633
+ },
3634
+ {
3635
+ "epoch": 0.91,
3636
+ "grad_norm": 0.14463412761688232,
3637
+ "learning_rate": 2.3850682564138145e-05,
3638
+ "loss": 0.0519,
3639
+ "step": 514
3640
+ },
3641
+ {
3642
+ "epoch": 0.91,
3643
+ "grad_norm": 0.17916260659694672,
3644
+ "learning_rate": 2.3828087719541787e-05,
3645
+ "loss": 0.0535,
3646
+ "step": 515
3647
+ },
3648
+ {
3649
+ "epoch": 0.91,
3650
+ "grad_norm": 0.2539409399032593,
3651
+ "learning_rate": 2.3805462187096402e-05,
3652
+ "loss": 0.0579,
3653
+ "step": 516
3654
+ },
3655
+ {
3656
+ "epoch": 0.91,
3657
+ "grad_norm": 0.20096299052238464,
3658
+ "learning_rate": 2.3782806045451963e-05,
3659
+ "loss": 0.0581,
3660
+ "step": 517
3661
+ },
3662
+ {
3663
+ "epoch": 0.92,
3664
+ "grad_norm": 0.15366317331790924,
3665
+ "learning_rate": 2.376011937336485e-05,
3666
+ "loss": 0.0392,
3667
+ "step": 518
3668
+ },
3669
+ {
3670
+ "epoch": 0.92,
3671
+ "grad_norm": 0.28773725032806396,
3672
+ "learning_rate": 2.373740224969758e-05,
3673
+ "loss": 0.1054,
3674
+ "step": 519
3675
+ },
3676
+ {
3677
+ "epoch": 0.92,
3678
+ "grad_norm": 0.18706980347633362,
3679
+ "learning_rate": 2.371465475341852e-05,
3680
+ "loss": 0.0422,
3681
+ "step": 520
3682
+ },
3683
+ {
3684
+ "epoch": 0.92,
3685
+ "grad_norm": 0.263085275888443,
3686
+ "learning_rate": 2.369187696360161e-05,
3687
+ "loss": 0.0533,
3688
+ "step": 521
3689
+ },
3690
+ {
3691
+ "epoch": 0.92,
3692
+ "grad_norm": 0.35978153347969055,
3693
+ "learning_rate": 2.3669068959426107e-05,
3694
+ "loss": 0.0871,
3695
+ "step": 522
3696
+ },
3697
+ {
3698
+ "epoch": 0.93,
3699
+ "grad_norm": 0.3314432203769684,
3700
+ "learning_rate": 2.364623082017629e-05,
3701
+ "loss": 0.0481,
3702
+ "step": 523
3703
+ },
3704
+ {
3705
+ "epoch": 0.93,
3706
+ "grad_norm": 0.19833628833293915,
3707
+ "learning_rate": 2.3623362625241193e-05,
3708
+ "loss": 0.0563,
3709
+ "step": 524
3710
+ },
3711
+ {
3712
+ "epoch": 0.93,
3713
+ "grad_norm": 0.17452682554721832,
3714
+ "learning_rate": 2.3600464454114326e-05,
3715
+ "loss": 0.0464,
3716
+ "step": 525
3717
+ },
3718
+ {
3719
+ "epoch": 0.93,
3720
+ "grad_norm": 0.24458369612693787,
3721
+ "learning_rate": 2.3577536386393416e-05,
3722
+ "loss": 0.0722,
3723
+ "step": 526
3724
+ },
3725
+ {
3726
+ "epoch": 0.93,
3727
+ "grad_norm": 0.309350848197937,
3728
+ "learning_rate": 2.35545785017801e-05,
3729
+ "loss": 0.0794,
3730
+ "step": 527
3731
+ },
3732
+ {
3733
+ "epoch": 0.93,
3734
+ "grad_norm": 0.42290210723876953,
3735
+ "learning_rate": 2.3531590880079663e-05,
3736
+ "loss": 0.0753,
3737
+ "step": 528
3738
+ },
3739
+ {
3740
+ "epoch": 0.94,
3741
+ "grad_norm": 0.1993589699268341,
3742
+ "learning_rate": 2.3508573601200767e-05,
3743
+ "loss": 0.0589,
3744
+ "step": 529
3745
+ },
3746
+ {
3747
+ "epoch": 0.94,
3748
+ "grad_norm": 0.1793728619813919,
3749
+ "learning_rate": 2.348552674515517e-05,
3750
+ "loss": 0.0587,
3751
+ "step": 530
3752
+ },
3753
+ {
3754
+ "epoch": 0.94,
3755
+ "grad_norm": 0.1571635901927948,
3756
+ "learning_rate": 2.3462450392057437e-05,
3757
+ "loss": 0.0427,
3758
+ "step": 531
3759
+ },
3760
+ {
3761
+ "epoch": 0.94,
3762
+ "grad_norm": 0.2197573184967041,
3763
+ "learning_rate": 2.343934462212467e-05,
3764
+ "loss": 0.0569,
3765
+ "step": 532
3766
+ },
3767
+ {
3768
+ "epoch": 0.94,
3769
+ "grad_norm": 0.1468045711517334,
3770
+ "learning_rate": 2.341620951567624e-05,
3771
+ "loss": 0.0501,
3772
+ "step": 533
3773
+ },
3774
+ {
3775
+ "epoch": 0.94,
3776
+ "grad_norm": 0.1460326462984085,
3777
+ "learning_rate": 2.339304515313348e-05,
3778
+ "loss": 0.0446,
3779
+ "step": 534
3780
+ },
3781
+ {
3782
+ "epoch": 0.95,
3783
+ "grad_norm": 0.20360475778579712,
3784
+ "learning_rate": 2.3369851615019436e-05,
3785
+ "loss": 0.056,
3786
+ "step": 535
3787
+ },
3788
+ {
3789
+ "epoch": 0.95,
3790
+ "grad_norm": 0.17234598100185394,
3791
+ "learning_rate": 2.3346628981958565e-05,
3792
+ "loss": 0.0493,
3793
+ "step": 536
3794
+ },
3795
+ {
3796
+ "epoch": 0.95,
3797
+ "grad_norm": 0.21084345877170563,
3798
+ "learning_rate": 2.332337733467646e-05,
3799
+ "loss": 0.0781,
3800
+ "step": 537
3801
+ },
3802
+ {
3803
+ "epoch": 0.95,
3804
+ "grad_norm": 0.15120622515678406,
3805
+ "learning_rate": 2.3300096753999585e-05,
3806
+ "loss": 0.0508,
3807
+ "step": 538
3808
+ },
3809
+ {
3810
+ "epoch": 0.95,
3811
+ "grad_norm": 0.19097232818603516,
3812
+ "learning_rate": 2.3276787320854967e-05,
3813
+ "loss": 0.0558,
3814
+ "step": 539
3815
+ },
3816
+ {
3817
+ "epoch": 0.96,
3818
+ "grad_norm": 0.14518237113952637,
3819
+ "learning_rate": 2.3253449116269937e-05,
3820
+ "loss": 0.0363,
3821
+ "step": 540
3822
+ },
3823
+ {
3824
+ "epoch": 0.96,
3825
+ "grad_norm": 0.38005223870277405,
3826
+ "learning_rate": 2.3230082221371834e-05,
3827
+ "loss": 0.1022,
3828
+ "step": 541
3829
+ },
3830
+ {
3831
+ "epoch": 0.96,
3832
+ "grad_norm": 0.15401460230350494,
3833
+ "learning_rate": 2.3206686717387742e-05,
3834
+ "loss": 0.0745,
3835
+ "step": 542
3836
+ },
3837
+ {
3838
+ "epoch": 0.96,
3839
+ "grad_norm": 0.15603908896446228,
3840
+ "learning_rate": 2.3183262685644177e-05,
3841
+ "loss": 0.035,
3842
+ "step": 543
3843
+ },
3844
+ {
3845
+ "epoch": 0.96,
3846
+ "grad_norm": 0.17525097727775574,
3847
+ "learning_rate": 2.3159810207566832e-05,
3848
+ "loss": 0.0584,
3849
+ "step": 544
3850
+ },
3851
+ {
3852
+ "epoch": 0.96,
3853
+ "grad_norm": 0.17069534957408905,
3854
+ "learning_rate": 2.3136329364680288e-05,
3855
+ "loss": 0.0569,
3856
+ "step": 545
3857
+ },
3858
+ {
3859
+ "epoch": 0.97,
3860
+ "grad_norm": 0.3221694231033325,
3861
+ "learning_rate": 2.3112820238607716e-05,
3862
+ "loss": 0.0878,
3863
+ "step": 546
3864
+ },
3865
+ {
3866
+ "epoch": 0.97,
3867
+ "grad_norm": 0.2566680908203125,
3868
+ "learning_rate": 2.3089282911070613e-05,
3869
+ "loss": 0.0394,
3870
+ "step": 547
3871
+ },
3872
+ {
3873
+ "epoch": 0.97,
3874
+ "grad_norm": 0.17850065231323242,
3875
+ "learning_rate": 2.3065717463888505e-05,
3876
+ "loss": 0.0351,
3877
+ "step": 548
3878
+ },
3879
+ {
3880
+ "epoch": 0.97,
3881
+ "grad_norm": 0.25362351536750793,
3882
+ "learning_rate": 2.3042123978978665e-05,
3883
+ "loss": 0.0596,
3884
+ "step": 549
3885
+ },
3886
+ {
3887
+ "epoch": 0.97,
3888
+ "grad_norm": 0.20955722033977509,
3889
+ "learning_rate": 2.3018502538355827e-05,
3890
+ "loss": 0.0534,
3891
+ "step": 550
3892
+ },
3893
+ {
3894
+ "epoch": 0.97,
3895
+ "grad_norm": 0.19723302125930786,
3896
+ "learning_rate": 2.2994853224131915e-05,
3897
+ "loss": 0.0674,
3898
+ "step": 551
3899
+ },
3900
+ {
3901
+ "epoch": 0.98,
3902
+ "grad_norm": 0.2044544219970703,
3903
+ "learning_rate": 2.2971176118515734e-05,
3904
+ "loss": 0.0505,
3905
+ "step": 552
3906
+ },
3907
+ {
3908
+ "epoch": 0.98,
3909
+ "grad_norm": 0.2544882893562317,
3910
+ "learning_rate": 2.2947471303812708e-05,
3911
+ "loss": 0.0967,
3912
+ "step": 553
3913
+ },
3914
+ {
3915
+ "epoch": 0.98,
3916
+ "grad_norm": 0.16680030524730682,
3917
+ "learning_rate": 2.2923738862424565e-05,
3918
+ "loss": 0.0395,
3919
+ "step": 554
3920
+ },
3921
+ {
3922
+ "epoch": 0.98,
3923
+ "grad_norm": 0.27806153893470764,
3924
+ "learning_rate": 2.2899978876849084e-05,
3925
+ "loss": 0.0788,
3926
+ "step": 555
3927
+ },
3928
+ {
3929
+ "epoch": 0.98,
3930
+ "grad_norm": 0.1830155849456787,
3931
+ "learning_rate": 2.287619142967979e-05,
3932
+ "loss": 0.0538,
3933
+ "step": 556
3934
+ },
3935
+ {
3936
+ "epoch": 0.99,
3937
+ "grad_norm": 0.33155858516693115,
3938
+ "learning_rate": 2.285237660360566e-05,
3939
+ "loss": 0.0417,
3940
+ "step": 557
3941
+ },
3942
+ {
3943
+ "epoch": 0.99,
3944
+ "grad_norm": 0.2150736302137375,
3945
+ "learning_rate": 2.2828534481410847e-05,
3946
+ "loss": 0.0396,
3947
+ "step": 558
3948
+ },
3949
+ {
3950
+ "epoch": 0.99,
3951
+ "grad_norm": 0.2404957413673401,
3952
+ "learning_rate": 2.28046651459744e-05,
3953
+ "loss": 0.0554,
3954
+ "step": 559
3955
+ },
3956
+ {
3957
+ "epoch": 0.99,
3958
+ "grad_norm": 0.22239123284816742,
3959
+ "learning_rate": 2.278076868026995e-05,
3960
+ "loss": 0.0592,
3961
+ "step": 560
3962
+ },
3963
+ {
3964
+ "epoch": 0.99,
3965
+ "grad_norm": 0.24049235880374908,
3966
+ "learning_rate": 2.2756845167365452e-05,
3967
+ "loss": 0.0462,
3968
+ "step": 561
3969
+ },
3970
+ {
3971
+ "epoch": 0.99,
3972
+ "grad_norm": 0.24881111085414886,
3973
+ "learning_rate": 2.273289469042287e-05,
3974
+ "loss": 0.0483,
3975
+ "step": 562
3976
+ },
3977
+ {
3978
+ "epoch": 1.0,
3979
+ "grad_norm": 0.5261463522911072,
3980
+ "learning_rate": 2.2708917332697908e-05,
3981
+ "loss": 0.0748,
3982
+ "step": 563
3983
+ },
3984
+ {
3985
+ "epoch": 1.0,
3986
+ "grad_norm": 0.3064204752445221,
3987
+ "learning_rate": 2.26849131775397e-05,
3988
+ "loss": 0.0532,
3989
+ "step": 564
3990
+ },
3991
+ {
3992
+ "epoch": 1.0,
3993
+ "grad_norm": 0.6424417495727539,
3994
+ "learning_rate": 2.2660882308390547e-05,
3995
+ "loss": 0.1566,
3996
+ "step": 565
3997
+ }
3998
+ ],
3999
+ "logging_steps": 1,
4000
+ "max_steps": 1695,
4001
+ "num_input_tokens_seen": 0,
4002
+ "num_train_epochs": 3,
4003
+ "save_steps": 565,
4004
+ "total_flos": 5.277457624072192e+16,
4005
+ "train_batch_size": 2,
4006
+ "trial_name": null,
4007
+ "trial_params": null
4008
+ }
checkpoint-565/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222c6d9f6232f31ff9a258358b395f70d592023a50d4056572ccf3372d2fda1
3
+ size 5752
checkpoint-565/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_storage": "uint8",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": 32768,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.40.0.dev0",
39
+ "use_cache": false,
40
+ "use_sliding_window": false,
41
+ "vocab_size": 151936
42
+ }