yujia23 commited on
Commit
04425a0
·
verified ·
1 Parent(s): fcb70b4

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +162 -0
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +5 -0
  5. checkpoint-1130/README.md +202 -0
  6. checkpoint-1130/adapter_config.json +34 -0
  7. checkpoint-1130/adapter_model.safetensors +3 -0
  8. checkpoint-1130/added_tokens.json +5 -0
  9. checkpoint-1130/merges.txt +0 -0
  10. checkpoint-1130/optimizer.pt +3 -0
  11. checkpoint-1130/rng_state_0.pth +3 -0
  12. checkpoint-1130/rng_state_1.pth +3 -0
  13. checkpoint-1130/scheduler.pt +3 -0
  14. checkpoint-1130/special_tokens_map.json +20 -0
  15. checkpoint-1130/tokenizer.json +0 -0
  16. checkpoint-1130/tokenizer_config.json +43 -0
  17. checkpoint-1130/trainer_state.json +0 -0
  18. checkpoint-1130/training_args.bin +3 -0
  19. checkpoint-1130/vocab.json +0 -0
  20. checkpoint-1695/README.md +202 -0
  21. checkpoint-1695/adapter_config.json +34 -0
  22. checkpoint-1695/adapter_model.safetensors +3 -0
  23. checkpoint-1695/added_tokens.json +5 -0
  24. checkpoint-1695/merges.txt +0 -0
  25. checkpoint-1695/optimizer.pt +3 -0
  26. checkpoint-1695/rng_state_0.pth +3 -0
  27. checkpoint-1695/rng_state_1.pth +3 -0
  28. checkpoint-1695/scheduler.pt +3 -0
  29. checkpoint-1695/special_tokens_map.json +20 -0
  30. checkpoint-1695/tokenizer.json +0 -0
  31. checkpoint-1695/tokenizer_config.json +43 -0
  32. checkpoint-1695/trainer_state.json +0 -0
  33. checkpoint-1695/training_args.bin +3 -0
  34. checkpoint-1695/vocab.json +0 -0
  35. checkpoint-565/README.md +202 -0
  36. checkpoint-565/adapter_config.json +34 -0
  37. checkpoint-565/adapter_model.safetensors +3 -0
  38. checkpoint-565/added_tokens.json +5 -0
  39. checkpoint-565/merges.txt +0 -0
  40. checkpoint-565/optimizer.pt +3 -0
  41. checkpoint-565/rng_state_0.pth +3 -0
  42. checkpoint-565/rng_state_1.pth +3 -0
  43. checkpoint-565/scheduler.pt +3 -0
  44. checkpoint-565/special_tokens_map.json +20 -0
  45. checkpoint-565/tokenizer.json +0 -0
  46. checkpoint-565/tokenizer_config.json +43 -0
  47. checkpoint-565/trainer_state.json +4008 -0
  48. checkpoint-565/training_args.bin +3 -0
  49. checkpoint-565/vocab.json +0 -0
  50. config.json +42 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: Qwen/Qwen1.5-7B
7
+ model-index:
8
+ - name: home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/5e-3/
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # base_model: Qwen/Qwen-7B
21
+ base_model: Qwen/Qwen1.5-7B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: true
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ datasets:
32
+ # - path: mhenrichsen/alpaca_2k_test
33
+ - path: /home/yujia/home/CN_Hateful/train_toxiCN_cn.json
34
+ # - path: /home/yujia/home/CN_Hateful/train_toxiCN.json
35
+ # - path: /home/yujia/home/CN_Hateful/train.json
36
+ # - path: /home/yujia/home/CN_Hateful/train_cn.json
37
+ ds_type: json
38
+ type: alpaca
39
+ dataset_prepared_path:
40
+ val_set_size: 0.05
41
+ output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/5e-3/
42
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/toxi/1e-5/
43
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/cold/3e-4/
44
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/CN/cold/3e-4/
45
+
46
+ sequence_len: 256 # supports up to 8192
47
+ sample_packing: false
48
+ pad_to_sequence_len:
49
+
50
+ adapter: lora
51
+ lora_model_dir:
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+
58
+ wandb_project:
59
+ wandb_entity:
60
+ wandb_watch:
61
+ wandb_name:
62
+ wandb_log_model:
63
+
64
+ gradient_accumulation_steps: 4
65
+ micro_batch_size: 2
66
+ num_epochs: 3
67
+ optimizer: adamw_bnb_8bit
68
+ lr_scheduler: cosine
69
+ learning_rate: 0.005
70
+
71
+ train_on_inputs: false
72
+ group_by_length: false
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: false
78
+ early_stopping_patience:
79
+ resume_from_checkpoint:
80
+ local_rank:
81
+ logging_steps: 1
82
+ xformers_attention:
83
+ flash_attention:
84
+
85
+ warmup_steps: 10
86
+ evals_per_epoch: 4
87
+ eval_table_size:
88
+ eval_max_new_tokens: 20
89
+ saves_per_epoch: 1
90
+ debug:
91
+ deepspeed:
92
+ weight_decay: 0.0
93
+ fsdp:
94
+ fsdp_config:
95
+ special_tokens:
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ # home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/5e-3/
102
+
103
+ This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
104
+ It achieves the following results on the evaluation set:
105
+ - Loss: 0.1365
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 0.005
125
+ - train_batch_size: 2
126
+ - eval_batch_size: 2
127
+ - seed: 42
128
+ - distributed_type: multi-GPU
129
+ - num_devices: 2
130
+ - gradient_accumulation_steps: 4
131
+ - total_train_batch_size: 16
132
+ - total_eval_batch_size: 4
133
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 10
136
+ - num_epochs: 3
137
+
138
+ ### Training results
139
+
140
+ | Training Loss | Epoch | Step | Validation Loss |
141
+ |:-------------:|:-----:|:----:|:---------------:|
142
+ | 3.3182 | 0.0 | 1 | 3.3363 |
143
+ | 0.9249 | 0.25 | 142 | 1.2173 |
144
+ | 0.1414 | 0.5 | 284 | 0.1391 |
145
+ | 0.1786 | 0.75 | 426 | 0.1506 |
146
+ | 0.1361 | 1.0 | 568 | 0.1424 |
147
+ | 0.2225 | 1.26 | 710 | 0.1712 |
148
+ | 0.1372 | 1.51 | 852 | 0.1384 |
149
+ | 0.1379 | 1.76 | 994 | 0.1387 |
150
+ | 0.1412 | 2.01 | 1136 | 0.1379 |
151
+ | 0.162 | 2.26 | 1278 | 0.1443 |
152
+ | 0.1387 | 2.51 | 1420 | 0.1377 |
153
+ | 0.1431 | 2.76 | 1562 | 0.1365 |
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.10.0
159
+ - Transformers 4.40.0.dev0
160
+ - Pytorch 2.2.1+cu121
161
+ - Datasets 2.18.0
162
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52754a4804ee201fdba562f9af40a03b3835919d468c2d34a57e12fa2e7d7bc0
3
+ size 319977674
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1130/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1130/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3166ef910a67be0f565f16d65e5f9ca8bbec0013dd183c2a9c3cdde187859a15
3
+ size 319876032
checkpoint-1130/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19123ea7864434ee2539ac0bc983afaf6e61f989839ed2e7c349f449de12483
3
+ size 160736532
checkpoint-1130/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4901585e9d75e84023ab72e4541020015ec7f9e3a44dd30228bed49938a1bc
3
+ size 14512
checkpoint-1130/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52b8bbcff4bb55ccbed97b61cc7bef4a35d002ff92406d2e23baa476f0a8d21
3
+ size 14512
checkpoint-1130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecde87df8d7aeb2a36d4b8255dea34eddd6fa53e86abece8562f870a6b979e87
3
+ size 1064
checkpoint-1130/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1130/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1130/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29422678c4871216e66e5816d677273e69d3b9eb007516a0010d9a7c35cd23f0
3
+ size 5752
checkpoint-1130/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1695/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1695/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b981747c673f22d11a0acbf9d95ef289fe81a115b9fa2b31683fe8c07e13a37
3
+ size 319876032
checkpoint-1695/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1695/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665d5e548659037486811f61edff6e55ce884fdf2f1ec96f2373c5a6d07c23a3
3
+ size 160736532
checkpoint-1695/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55ad0de153a9394c92810ea3c27399952a305bd25451ed430aaf933a9a5e55c
3
+ size 14512
checkpoint-1695/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49270efca7489b54d9139d7c93770e62001cb2f4e09707c29e75b02ffb96afb7
3
+ size 14512
checkpoint-1695/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5730f9934f30cb86fb752e63839b84e90016765647ffde8b5a2c9218b491b4e
3
+ size 1064
checkpoint-1695/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1695/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1695/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29422678c4871216e66e5816d677273e69d3b9eb007516a0010d9a7c35cd23f0
3
+ size 5752
checkpoint-1695/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-565/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-565/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1364159c0b23984a497c2374ae0e1b6e13c4eee610dd354afb3afdf5ae810d85
3
+ size 319876032
checkpoint-565/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-565/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd6646a3a350caa867e553d1b524c1ac82f5159ec0600bae092570e7ba64091e
3
+ size 160736532
checkpoint-565/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a681c33ffd6b61feaf98d05f702d37f2e4cea5ae28ff9fe027ab78959f6d28
3
+ size 14512
checkpoint-565/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264fc0be051e80523f0b0faf9f50191b6a6d8a450a601ac7a6354029ee14de9c
3
+ size 14512
checkpoint-565/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78605a8380e49fbfaddac799151b86cf4949641346e5183b9ed2c1c8230ee6d1
3
+ size 1064
checkpoint-565/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-565/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-565/trainer_state.json ADDED
@@ -0,0 +1,4008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9995577178239717,
5
+ "eval_steps": 142,
6
+ "global_step": 565,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 4.710759162902832,
14
+ "learning_rate": 0.0005,
15
+ "loss": 3.3182,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 3.3362529277801514,
21
+ "eval_runtime": 14.462,
22
+ "eval_samples_per_second": 32.983,
23
+ "eval_steps_per_second": 8.298,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 4.644880771636963,
29
+ "learning_rate": 0.001,
30
+ "loss": 3.2788,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 2.652876138687134,
36
+ "learning_rate": 0.0015,
37
+ "loss": 0.9781,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 12.365164756774902,
43
+ "learning_rate": 0.002,
44
+ "loss": 0.65,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 18.633052825927734,
50
+ "learning_rate": 0.0025,
51
+ "loss": 2.3289,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 12.415583610534668,
57
+ "learning_rate": 0.003,
58
+ "loss": 0.7836,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "grad_norm": 10.400487899780273,
64
+ "learning_rate": 0.0034999999999999996,
65
+ "loss": 0.8244,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01,
70
+ "grad_norm": 2.2445099353790283,
71
+ "learning_rate": 0.004,
72
+ "loss": 0.4377,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 23.533748626708984,
78
+ "learning_rate": 0.0045000000000000005,
79
+ "loss": 1.1932,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 83.60514831542969,
85
+ "learning_rate": 0.005,
86
+ "loss": 18.4965,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "grad_norm": 51.204532623291016,
92
+ "learning_rate": 0.0049999956547994865,
93
+ "loss": 4.8481,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.02,
98
+ "grad_norm": 100.4805908203125,
99
+ "learning_rate": 0.0049999826192130515,
100
+ "loss": 21.3498,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "grad_norm": 105.87885284423828,
106
+ "learning_rate": 0.004999960893286007,
107
+ "loss": 12.4439,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.02,
112
+ "grad_norm": 83.33695983886719,
113
+ "learning_rate": 0.004999930477093878,
114
+ "loss": 14.4507,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 103.42640686035156,
120
+ "learning_rate": 0.0049998913707423945,
121
+ "loss": 15.3804,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "grad_norm": 36.2640380859375,
127
+ "learning_rate": 0.0049998435743674975,
128
+ "loss": 17.3659,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "grad_norm": 41.00593948364258,
134
+ "learning_rate": 0.0049997870881353336,
135
+ "loss": 15.5879,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.03,
140
+ "grad_norm": 26.99127197265625,
141
+ "learning_rate": 0.0049997219122422595,
142
+ "loss": 32.2726,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "grad_norm": 23.069412231445312,
148
+ "learning_rate": 0.0049996480469148355,
149
+ "loss": 35.3862,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.04,
154
+ "grad_norm": 16.51882553100586,
155
+ "learning_rate": 0.004999565492409831,
156
+ "loss": 15.8877,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.04,
161
+ "grad_norm": 22.481494903564453,
162
+ "learning_rate": 0.0049994742490142175,
163
+ "loss": 27.0009,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "grad_norm": 25.911300659179688,
169
+ "learning_rate": 0.004999374317045171,
170
+ "loss": 31.2604,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "grad_norm": 19.360708236694336,
176
+ "learning_rate": 0.0049992656968500734,
177
+ "loss": 15.2702,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.04,
182
+ "grad_norm": 24.852096557617188,
183
+ "learning_rate": 0.0049991483888065045,
184
+ "loss": 19.2565,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "grad_norm": 21.394197463989258,
190
+ "learning_rate": 0.004999022393322246,
191
+ "loss": 11.2259,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.05,
196
+ "grad_norm": 20.673797607421875,
197
+ "learning_rate": 0.004998887710835278,
198
+ "loss": 12.7072,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.05,
203
+ "grad_norm": 22.879501342773438,
204
+ "learning_rate": 0.004998744341813779,
205
+ "loss": 12.8781,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "grad_norm": 17.807809829711914,
211
+ "learning_rate": 0.004998592286756122,
212
+ "loss": 10.9183,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "grad_norm": 18.086101531982422,
218
+ "learning_rate": 0.004998431546190876,
219
+ "loss": 15.1292,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.05,
224
+ "grad_norm": 14.039950370788574,
225
+ "learning_rate": 0.0049982621206768,
226
+ "loss": 13.7787,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "grad_norm": 20.522136688232422,
232
+ "learning_rate": 0.004998084010802845,
233
+ "loss": 15.6458,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06,
238
+ "grad_norm": 19.700590133666992,
239
+ "learning_rate": 0.004997897217188148,
240
+ "loss": 12.6489,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.06,
245
+ "grad_norm": 9.318965911865234,
246
+ "learning_rate": 0.004997701740482036,
247
+ "loss": 7.3008,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "grad_norm": 10.423604965209961,
253
+ "learning_rate": 0.004997497581364014,
254
+ "loss": 4.9017,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "grad_norm": 8.51007080078125,
260
+ "learning_rate": 0.004997284740543776,
261
+ "loss": 3.6646,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.06,
266
+ "grad_norm": 14.993752479553223,
267
+ "learning_rate": 0.0049970632187611875,
268
+ "loss": 5.5905,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "grad_norm": 14.212651252746582,
274
+ "learning_rate": 0.0049968330167862954,
275
+ "loss": 5.7808,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.07,
280
+ "grad_norm": 10.461276054382324,
281
+ "learning_rate": 0.004996594135419318,
282
+ "loss": 3.9539,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.07,
287
+ "grad_norm": 9.1497220993042,
288
+ "learning_rate": 0.004996346575490646,
289
+ "loss": 3.124,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "grad_norm": 9.099406242370605,
295
+ "learning_rate": 0.004996090337860836,
296
+ "loss": 3.7992,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "grad_norm": 13.767452239990234,
302
+ "learning_rate": 0.0049958254234206126,
303
+ "loss": 4.5866,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.07,
308
+ "grad_norm": 12.716552734375,
309
+ "learning_rate": 0.00499555183309086,
310
+ "loss": 3.3461,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "grad_norm": 7.223677158355713,
316
+ "learning_rate": 0.004995269567822622,
317
+ "loss": 2.0728,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.08,
322
+ "grad_norm": 12.463162422180176,
323
+ "learning_rate": 0.0049949786285970995,
324
+ "loss": 2.7682,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.08,
329
+ "grad_norm": 4.0829691886901855,
330
+ "learning_rate": 0.004994679016425641,
331
+ "loss": 1.6774,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "grad_norm": 6.238979816436768,
337
+ "learning_rate": 0.00499437073234975,
338
+ "loss": 2.3438,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "grad_norm": 5.805751800537109,
344
+ "learning_rate": 0.004994053777441069,
345
+ "loss": 2.712,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.08,
350
+ "grad_norm": 5.092411041259766,
351
+ "learning_rate": 0.004993728152801385,
352
+ "loss": 2.2179,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "grad_norm": 5.180473327636719,
358
+ "learning_rate": 0.00499339385956262,
359
+ "loss": 2.0434,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.09,
364
+ "grad_norm": 10.287396430969238,
365
+ "learning_rate": 0.004993050898886834,
366
+ "loss": 4.3246,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.09,
371
+ "grad_norm": 10.666089057922363,
372
+ "learning_rate": 0.00499269927196621,
373
+ "loss": 4.0474,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.09,
378
+ "grad_norm": 9.083404541015625,
379
+ "learning_rate": 0.004992338980023061,
380
+ "loss": 2.7797,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "grad_norm": 6.394657135009766,
386
+ "learning_rate": 0.00499197002430982,
387
+ "loss": 2.4962,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.1,
392
+ "grad_norm": 7.713652610778809,
393
+ "learning_rate": 0.004991592406109036,
394
+ "loss": 2.9878,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "grad_norm": 8.85560131072998,
400
+ "learning_rate": 0.00499120612673337,
401
+ "loss": 3.1156,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.1,
406
+ "grad_norm": 6.502203941345215,
407
+ "learning_rate": 0.004990811187525591,
408
+ "loss": 2.0781,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.1,
413
+ "grad_norm": 7.197846412658691,
414
+ "learning_rate": 0.004990407589858572,
415
+ "loss": 2.4231,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.1,
420
+ "grad_norm": 7.068665504455566,
421
+ "learning_rate": 0.004989995335135282,
422
+ "loss": 3.0021,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "grad_norm": 5.702466011047363,
428
+ "learning_rate": 0.004989574424788787,
429
+ "loss": 2.6863,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.11,
434
+ "grad_norm": 3.5532689094543457,
435
+ "learning_rate": 0.004989144860282235,
436
+ "loss": 1.8552,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "grad_norm": 6.944902420043945,
442
+ "learning_rate": 0.004988706643108864,
443
+ "loss": 2.413,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.11,
448
+ "grad_norm": 8.177939414978027,
449
+ "learning_rate": 0.004988259774791987,
450
+ "loss": 2.779,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.11,
455
+ "grad_norm": 4.095608711242676,
456
+ "learning_rate": 0.004987804256884988,
457
+ "loss": 2.4072,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.11,
462
+ "grad_norm": 6.517646789550781,
463
+ "learning_rate": 0.004987340090971322,
464
+ "loss": 2.3885,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "grad_norm": 3.5518805980682373,
470
+ "learning_rate": 0.0049868672786645045,
471
+ "loss": 1.6975,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.12,
476
+ "grad_norm": 4.4491496086120605,
477
+ "learning_rate": 0.004986385821608106,
478
+ "loss": 1.61,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "grad_norm": 6.043672561645508,
484
+ "learning_rate": 0.004985895721475749,
485
+ "loss": 2.0829,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.12,
490
+ "grad_norm": 4.9056010246276855,
491
+ "learning_rate": 0.004985396979971099,
492
+ "loss": 1.7009,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.12,
497
+ "grad_norm": 3.501497983932495,
498
+ "learning_rate": 0.0049848895988278625,
499
+ "loss": 1.4123,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.12,
504
+ "grad_norm": 4.273284912109375,
505
+ "learning_rate": 0.004984373579809778,
506
+ "loss": 1.4578,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.13,
511
+ "grad_norm": 4.848941326141357,
512
+ "learning_rate": 0.00498384892471061,
513
+ "loss": 1.8438,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.13,
518
+ "grad_norm": 5.663628101348877,
519
+ "learning_rate": 0.004983315635354144,
520
+ "loss": 1.9982,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.13,
525
+ "grad_norm": 5.814151287078857,
526
+ "learning_rate": 0.004982773713594179,
527
+ "loss": 1.8503,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.13,
532
+ "grad_norm": 5.263804912567139,
533
+ "learning_rate": 0.004982223161314522,
534
+ "loss": 1.9777,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "grad_norm": 3.4019265174865723,
540
+ "learning_rate": 0.00498166398042898,
541
+ "loss": 1.8134,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.13,
546
+ "grad_norm": 3.5382890701293945,
547
+ "learning_rate": 0.0049810961728813585,
548
+ "loss": 1.3,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.14,
553
+ "grad_norm": 9.210183143615723,
554
+ "learning_rate": 0.0049805197406454435,
555
+ "loss": 2.2969,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.14,
560
+ "grad_norm": 4.941742420196533,
561
+ "learning_rate": 0.004979934685725011,
562
+ "loss": 2.0702,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.14,
567
+ "grad_norm": 4.069230556488037,
568
+ "learning_rate": 0.0049793410101538005,
569
+ "loss": 1.7945,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.14,
574
+ "grad_norm": 1.7246112823486328,
575
+ "learning_rate": 0.004978738715995527,
576
+ "loss": 1.2438,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "grad_norm": 3.8042044639587402,
582
+ "learning_rate": 0.004978127805343859,
583
+ "loss": 1.761,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "grad_norm": 3.8493285179138184,
589
+ "learning_rate": 0.0049775082803224235,
590
+ "loss": 2.4098,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.15,
595
+ "grad_norm": 3.6602845191955566,
596
+ "learning_rate": 0.004976880143084786,
597
+ "loss": 2.0654,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.15,
602
+ "grad_norm": 3.3052616119384766,
603
+ "learning_rate": 0.004976243395814452,
604
+ "loss": 1.6004,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.15,
609
+ "grad_norm": 2.4892361164093018,
610
+ "learning_rate": 0.00497559804072486,
611
+ "loss": 1.5039,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.15,
616
+ "grad_norm": 3.386439323425293,
617
+ "learning_rate": 0.004974944080059365,
618
+ "loss": 1.5869,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "grad_norm": 3.3360776901245117,
624
+ "learning_rate": 0.004974281516091241,
625
+ "loss": 1.7258,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.16,
630
+ "grad_norm": 2.726275682449341,
631
+ "learning_rate": 0.004973610351123664,
632
+ "loss": 1.4276,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.16,
637
+ "grad_norm": 3.8582663536071777,
638
+ "learning_rate": 0.004972930587489714,
639
+ "loss": 1.5193,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.16,
644
+ "grad_norm": 4.054693222045898,
645
+ "learning_rate": 0.004972242227552358,
646
+ "loss": 1.7082,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.16,
651
+ "grad_norm": 2.651496171951294,
652
+ "learning_rate": 0.0049715452737044445,
653
+ "loss": 1.4398,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.16,
658
+ "grad_norm": 1.8549413681030273,
659
+ "learning_rate": 0.004970839728368696,
660
+ "loss": 1.1277,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.16,
665
+ "grad_norm": 3.3630051612854004,
666
+ "learning_rate": 0.004970125593997705,
667
+ "loss": 1.4225,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "grad_norm": 2.9479305744171143,
673
+ "learning_rate": 0.004969402873073914,
674
+ "loss": 1.5494,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.17,
679
+ "grad_norm": 2.186293601989746,
680
+ "learning_rate": 0.004968671568109616,
681
+ "loss": 1.4165,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.17,
686
+ "grad_norm": 2.534365177154541,
687
+ "learning_rate": 0.004967931681646948,
688
+ "loss": 1.4073,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.17,
693
+ "grad_norm": 3.300574779510498,
694
+ "learning_rate": 0.00496718321625787,
695
+ "loss": 1.3459,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.17,
700
+ "grad_norm": 1.7278486490249634,
701
+ "learning_rate": 0.004966426174544171,
702
+ "loss": 1.14,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "grad_norm": 3.837832450866699,
708
+ "learning_rate": 0.004965660559137448,
709
+ "loss": 1.3687,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.18,
714
+ "grad_norm": 3.386354684829712,
715
+ "learning_rate": 0.0049648863726991024,
716
+ "loss": 1.4498,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.18,
721
+ "grad_norm": 2.825348138809204,
722
+ "learning_rate": 0.004964103617920332,
723
+ "loss": 1.3711,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.18,
728
+ "grad_norm": 4.416274547576904,
729
+ "learning_rate": 0.004963312297522116,
730
+ "loss": 1.5401,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.18,
735
+ "grad_norm": 21.538768768310547,
736
+ "learning_rate": 0.004962512414255214,
737
+ "loss": 3.905,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.18,
742
+ "grad_norm": 3.0376906394958496,
743
+ "learning_rate": 0.0049617039709001455,
744
+ "loss": 1.2659,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "grad_norm": 3.5271809101104736,
750
+ "learning_rate": 0.004960886970267191,
751
+ "loss": 1.3535,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.19,
756
+ "grad_norm": 2.844996929168701,
757
+ "learning_rate": 0.004960061415196374,
758
+ "loss": 1.3717,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "grad_norm": 2.2052347660064697,
764
+ "learning_rate": 0.004959227308557459,
765
+ "loss": 1.1754,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.19,
770
+ "grad_norm": 4.3411736488342285,
771
+ "learning_rate": 0.004958384653249933,
772
+ "loss": 1.4149,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.19,
777
+ "grad_norm": 3.9820494651794434,
778
+ "learning_rate": 0.004957533452203,
779
+ "loss": 1.5,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.19,
784
+ "grad_norm": 4.067386627197266,
785
+ "learning_rate": 0.0049566737083755735,
786
+ "loss": 1.46,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.2,
791
+ "grad_norm": 1.9211413860321045,
792
+ "learning_rate": 0.00495580542475626,
793
+ "loss": 1.1369,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.2,
798
+ "grad_norm": 3.1695358753204346,
799
+ "learning_rate": 0.004954928604363353,
800
+ "loss": 1.3703,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "grad_norm": 3.406451940536499,
806
+ "learning_rate": 0.004954043250244819,
807
+ "loss": 1.4874,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.2,
812
+ "grad_norm": 2.779665470123291,
813
+ "learning_rate": 0.004953149365478293,
814
+ "loss": 1.2439,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.2,
819
+ "grad_norm": 3.7801878452301025,
820
+ "learning_rate": 0.004952246953171062,
821
+ "loss": 1.3442,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.21,
826
+ "grad_norm": 3.9421513080596924,
827
+ "learning_rate": 0.004951336016460053,
828
+ "loss": 1.4753,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.21,
833
+ "grad_norm": 2.5723776817321777,
834
+ "learning_rate": 0.004950416558511832,
835
+ "loss": 1.2204,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.21,
840
+ "grad_norm": 2.7108566761016846,
841
+ "learning_rate": 0.00494948858252258,
842
+ "loss": 1.2844,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "grad_norm": 3.7284321784973145,
848
+ "learning_rate": 0.004948552091718092,
849
+ "loss": 1.2804,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.21,
854
+ "grad_norm": 2.006575107574463,
855
+ "learning_rate": 0.004947607089353758,
856
+ "loss": 1.1397,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.21,
861
+ "grad_norm": 2.2837071418762207,
862
+ "learning_rate": 0.004946653578714559,
863
+ "loss": 1.1474,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.22,
868
+ "grad_norm": 2.0283279418945312,
869
+ "learning_rate": 0.0049456915631150514,
870
+ "loss": 1.1666,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.22,
875
+ "grad_norm": 3.005060911178589,
876
+ "learning_rate": 0.0049447210458993555,
877
+ "loss": 1.1475,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.22,
882
+ "grad_norm": 1.9485745429992676,
883
+ "learning_rate": 0.004943742030441145,
884
+ "loss": 1.1236,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "grad_norm": 2.6474170684814453,
890
+ "learning_rate": 0.004942754520143634,
891
+ "loss": 1.2125,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.22,
896
+ "grad_norm": 2.2282495498657227,
897
+ "learning_rate": 0.0049417585184395665,
898
+ "loss": 0.9396,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.22,
903
+ "grad_norm": 1.7349326610565186,
904
+ "learning_rate": 0.004940754028791205,
905
+ "loss": 0.8818,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.23,
910
+ "grad_norm": 1.3199844360351562,
911
+ "learning_rate": 0.004939741054690317,
912
+ "loss": 0.8562,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.23,
917
+ "grad_norm": 2.7869062423706055,
918
+ "learning_rate": 0.004938719599658161,
919
+ "loss": 1.0136,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.23,
924
+ "grad_norm": 10.484325408935547,
925
+ "learning_rate": 0.0049376896672454805,
926
+ "loss": 2.0971,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "grad_norm": 1.8717925548553467,
932
+ "learning_rate": 0.004936651261032486,
933
+ "loss": 1.0544,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.23,
938
+ "grad_norm": 1.6124004125595093,
939
+ "learning_rate": 0.004935604384628842,
940
+ "loss": 0.8779,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.24,
945
+ "grad_norm": 0.550537109375,
946
+ "learning_rate": 0.004934549041673661,
947
+ "loss": 0.8067,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.24,
952
+ "grad_norm": 2.3560948371887207,
953
+ "learning_rate": 0.0049334852358354836,
954
+ "loss": 1.0108,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.24,
959
+ "grad_norm": 1.5042353868484497,
960
+ "learning_rate": 0.004932412970812268,
961
+ "loss": 0.8573,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.24,
966
+ "grad_norm": 4.7427978515625,
967
+ "learning_rate": 0.004931332250331382,
968
+ "loss": 1.5866,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "grad_norm": 3.3485641479492188,
974
+ "learning_rate": 0.004930243078149581,
975
+ "loss": 1.024,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.24,
980
+ "grad_norm": 1.072599172592163,
981
+ "learning_rate": 0.004929145458053005,
982
+ "loss": 0.9484,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.25,
987
+ "grad_norm": 2.42199444770813,
988
+ "learning_rate": 0.004928039393857155,
989
+ "loss": 1.2085,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.25,
994
+ "grad_norm": 1.3018336296081543,
995
+ "learning_rate": 0.0049269248894068885,
996
+ "loss": 0.8148,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.25,
1001
+ "grad_norm": 2.3955087661743164,
1002
+ "learning_rate": 0.004925801948576402,
1003
+ "loss": 0.8474,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.25,
1008
+ "grad_norm": 0.8443170189857483,
1009
+ "learning_rate": 0.004924670575269217,
1010
+ "loss": 0.9249,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.25,
1015
+ "eval_loss": 1.2173190116882324,
1016
+ "eval_runtime": 18.0229,
1017
+ "eval_samples_per_second": 26.466,
1018
+ "eval_steps_per_second": 6.658,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.25,
1023
+ "grad_norm": 18.21401596069336,
1024
+ "learning_rate": 0.0049235307734181695,
1025
+ "loss": 1.0142,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.25,
1030
+ "grad_norm": 18.445880889892578,
1031
+ "learning_rate": 0.004922382546985393,
1032
+ "loss": 1.4088,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.26,
1037
+ "grad_norm": 3.3651649951934814,
1038
+ "learning_rate": 0.004921225899962307,
1039
+ "loss": 1.3859,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.26,
1044
+ "grad_norm": 5.419590950012207,
1045
+ "learning_rate": 0.004920060836369603,
1046
+ "loss": 1.3982,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.26,
1051
+ "grad_norm": 6.42302942276001,
1052
+ "learning_rate": 0.004918887360257228,
1053
+ "loss": 0.8986,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.26,
1058
+ "grad_norm": 2.406660795211792,
1059
+ "learning_rate": 0.004917705475704374,
1060
+ "loss": 0.7824,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.26,
1065
+ "grad_norm": 1.913580060005188,
1066
+ "learning_rate": 0.00491651518681946,
1067
+ "loss": 0.8983,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.27,
1072
+ "grad_norm": 3.3653571605682373,
1073
+ "learning_rate": 0.004915316497740121,
1074
+ "loss": 1.8095,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.27,
1079
+ "grad_norm": 2.5922982692718506,
1080
+ "learning_rate": 0.004914109412633194,
1081
+ "loss": 0.6852,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.27,
1086
+ "grad_norm": 2.0083518028259277,
1087
+ "learning_rate": 0.0049128939356946994,
1088
+ "loss": 0.6871,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.27,
1093
+ "grad_norm": 3.255305051803589,
1094
+ "learning_rate": 0.004911670071149831,
1095
+ "loss": 0.7797,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.27,
1100
+ "grad_norm": 5.756755828857422,
1101
+ "learning_rate": 0.0049104378232529364,
1102
+ "loss": 1.5976,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.27,
1107
+ "grad_norm": 3.5214617252349854,
1108
+ "learning_rate": 0.004909197196287509,
1109
+ "loss": 0.7824,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.28,
1114
+ "grad_norm": 2.516773223876953,
1115
+ "learning_rate": 0.004907948194566167,
1116
+ "loss": 0.7435,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.28,
1121
+ "grad_norm": 1.5353460311889648,
1122
+ "learning_rate": 0.004906690822430638,
1123
+ "loss": 0.5389,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.28,
1128
+ "grad_norm": 21.023536682128906,
1129
+ "learning_rate": 0.004905425084251753,
1130
+ "loss": 0.6795,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.28,
1135
+ "grad_norm": 2.1965794563293457,
1136
+ "learning_rate": 0.0049041509844294185,
1137
+ "loss": 0.8708,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.28,
1142
+ "grad_norm": 16.767335891723633,
1143
+ "learning_rate": 0.004902868527392611,
1144
+ "loss": 11.3741,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.28,
1149
+ "grad_norm": 23.763965606689453,
1150
+ "learning_rate": 0.004901577717599356,
1151
+ "loss": 2.152,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.29,
1156
+ "grad_norm": 5.418874740600586,
1157
+ "learning_rate": 0.004900278559536716,
1158
+ "loss": 2.0419,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.29,
1163
+ "grad_norm": 3.5911929607391357,
1164
+ "learning_rate": 0.004898971057720773,
1165
+ "loss": 1.2719,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.29,
1170
+ "grad_norm": 2.972569465637207,
1171
+ "learning_rate": 0.004897655216696613,
1172
+ "loss": 0.8896,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.29,
1177
+ "grad_norm": 12.528779029846191,
1178
+ "learning_rate": 0.0048963310410383085,
1179
+ "loss": 3.1689,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.29,
1184
+ "grad_norm": 11.792468070983887,
1185
+ "learning_rate": 0.00489499853534891,
1186
+ "loss": 1.2653,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.3,
1191
+ "grad_norm": 3.2615010738372803,
1192
+ "learning_rate": 0.004893657704260419,
1193
+ "loss": 0.8104,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.3,
1198
+ "grad_norm": 3.4236032962799072,
1199
+ "learning_rate": 0.00489230855243378,
1200
+ "loss": 0.6288,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.3,
1205
+ "grad_norm": 4.4682698249816895,
1206
+ "learning_rate": 0.004890951084558859,
1207
+ "loss": 0.8304,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.3,
1212
+ "grad_norm": 1.8197399377822876,
1213
+ "learning_rate": 0.004889585305354436,
1214
+ "loss": 0.4139,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.3,
1219
+ "grad_norm": 1.393115758895874,
1220
+ "learning_rate": 0.004888211219568175,
1221
+ "loss": 0.496,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.3,
1226
+ "grad_norm": 18.753366470336914,
1227
+ "learning_rate": 0.0048868288319766215,
1228
+ "loss": 1.8722,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.31,
1233
+ "grad_norm": 3.966686248779297,
1234
+ "learning_rate": 0.004885438147385174,
1235
+ "loss": 2.0632,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.31,
1240
+ "grad_norm": 2.374682903289795,
1241
+ "learning_rate": 0.004884039170628077,
1242
+ "loss": 0.823,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.31,
1247
+ "grad_norm": 3.996807813644409,
1248
+ "learning_rate": 0.004882631906568398,
1249
+ "loss": 2.6766,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.31,
1254
+ "grad_norm": 3.3108572959899902,
1255
+ "learning_rate": 0.004881216360098012,
1256
+ "loss": 1.9905,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.31,
1261
+ "grad_norm": 1.809220314025879,
1262
+ "learning_rate": 0.004879792536137585,
1263
+ "loss": 0.7756,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.31,
1268
+ "grad_norm": 2.4348185062408447,
1269
+ "learning_rate": 0.004878360439636559,
1270
+ "loss": 0.9632,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.32,
1275
+ "grad_norm": 3.283806324005127,
1276
+ "learning_rate": 0.004876920075573129,
1277
+ "loss": 1.0558,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.32,
1282
+ "grad_norm": 0.7374613285064697,
1283
+ "learning_rate": 0.004875471448954234,
1284
+ "loss": 0.5686,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.32,
1289
+ "grad_norm": 2.121089458465576,
1290
+ "learning_rate": 0.004874014564815531,
1291
+ "loss": 0.7455,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.32,
1296
+ "grad_norm": 2.558676242828369,
1297
+ "learning_rate": 0.004872549428221384,
1298
+ "loss": 0.8103,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.32,
1303
+ "grad_norm": 1.171405553817749,
1304
+ "learning_rate": 0.004871076044264842,
1305
+ "loss": 0.5592,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.33,
1310
+ "grad_norm": 1.803780198097229,
1311
+ "learning_rate": 0.004869594418067624,
1312
+ "loss": 0.6193,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.33,
1317
+ "grad_norm": 12.401668548583984,
1318
+ "learning_rate": 0.0048681045547801,
1319
+ "loss": 0.5366,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.33,
1324
+ "grad_norm": 59.98530197143555,
1325
+ "learning_rate": 0.004866606459581275,
1326
+ "loss": 3.0222,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.33,
1331
+ "grad_norm": 6.432986259460449,
1332
+ "learning_rate": 0.0048651001376787675,
1333
+ "loss": 3.8615,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.33,
1338
+ "grad_norm": 3.953183174133301,
1339
+ "learning_rate": 0.004863585594308793,
1340
+ "loss": 2.0406,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.33,
1345
+ "grad_norm": 2.769693374633789,
1346
+ "learning_rate": 0.0048620628347361495,
1347
+ "loss": 1.3331,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.34,
1352
+ "grad_norm": 8.753790855407715,
1353
+ "learning_rate": 0.004860531864254192,
1354
+ "loss": 1.7073,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.34,
1359
+ "grad_norm": 2.858003854751587,
1360
+ "learning_rate": 0.004858992688184819,
1361
+ "loss": 1.1102,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.34,
1366
+ "grad_norm": 4.322317600250244,
1367
+ "learning_rate": 0.0048574453118784555,
1368
+ "loss": 0.832,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.34,
1373
+ "grad_norm": 1.9701354503631592,
1374
+ "learning_rate": 0.004855889740714028,
1375
+ "loss": 0.809,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.34,
1380
+ "grad_norm": 2.3157918453216553,
1381
+ "learning_rate": 0.004854325980098951,
1382
+ "loss": 0.984,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.34,
1387
+ "grad_norm": 1.2397148609161377,
1388
+ "learning_rate": 0.004852754035469109,
1389
+ "loss": 0.625,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.35,
1394
+ "grad_norm": 3.4943249225616455,
1395
+ "learning_rate": 0.004851173912288833,
1396
+ "loss": 1.0917,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.35,
1401
+ "grad_norm": 2.8938004970550537,
1402
+ "learning_rate": 0.004849585616050884,
1403
+ "loss": 1.0859,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.35,
1408
+ "grad_norm": 1.433147668838501,
1409
+ "learning_rate": 0.004847989152276435,
1410
+ "loss": 0.7359,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.35,
1415
+ "grad_norm": 3.213465452194214,
1416
+ "learning_rate": 0.00484638452651505,
1417
+ "loss": 1.2727,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.35,
1422
+ "grad_norm": 2.7757675647735596,
1423
+ "learning_rate": 0.004844771744344666,
1424
+ "loss": 1.0766,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.36,
1429
+ "grad_norm": 1.495505928993225,
1430
+ "learning_rate": 0.0048431508113715716,
1431
+ "loss": 0.7187,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.36,
1436
+ "grad_norm": 3.498947858810425,
1437
+ "learning_rate": 0.004841521733230391,
1438
+ "loss": 1.0661,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.36,
1443
+ "grad_norm": 3.4537739753723145,
1444
+ "learning_rate": 0.00483988451558406,
1445
+ "loss": 1.2463,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.36,
1450
+ "grad_norm": 1.4878536462783813,
1451
+ "learning_rate": 0.004838239164123811,
1452
+ "loss": 0.7462,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.36,
1457
+ "grad_norm": 3.1998729705810547,
1458
+ "learning_rate": 0.004836585684569148,
1459
+ "loss": 1.1343,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.36,
1464
+ "grad_norm": 2.9068143367767334,
1465
+ "learning_rate": 0.0048349240826678335,
1466
+ "loss": 1.1487,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.37,
1471
+ "grad_norm": 1.4316679239273071,
1472
+ "learning_rate": 0.00483325436419586,
1473
+ "loss": 0.7304,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.37,
1478
+ "grad_norm": 2.4590532779693604,
1479
+ "learning_rate": 0.004831576534957437,
1480
+ "loss": 1.0713,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.37,
1485
+ "grad_norm": 2.316596269607544,
1486
+ "learning_rate": 0.004829890600784969,
1487
+ "loss": 1.1284,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.37,
1492
+ "grad_norm": 1.1584460735321045,
1493
+ "learning_rate": 0.004828196567539034,
1494
+ "loss": 0.5914,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.37,
1499
+ "grad_norm": 2.8200185298919678,
1500
+ "learning_rate": 0.004826494441108362,
1501
+ "loss": 0.8873,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.38,
1506
+ "grad_norm": 2.6962389945983887,
1507
+ "learning_rate": 0.004824784227409819,
1508
+ "loss": 0.8854,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.38,
1513
+ "grad_norm": 0.9641892313957214,
1514
+ "learning_rate": 0.0048230659323883806,
1515
+ "loss": 0.4092,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.38,
1520
+ "grad_norm": 2.1415939331054688,
1521
+ "learning_rate": 0.004821339562017116,
1522
+ "loss": 0.9972,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.38,
1527
+ "grad_norm": 2.411900758743286,
1528
+ "learning_rate": 0.004819605122297167,
1529
+ "loss": 1.0741,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.38,
1534
+ "grad_norm": 2.072662591934204,
1535
+ "learning_rate": 0.004817862619257723,
1536
+ "loss": 0.7594,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.38,
1541
+ "grad_norm": 2.3440897464752197,
1542
+ "learning_rate": 0.004816112058956005,
1543
+ "loss": 0.4256,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.39,
1548
+ "grad_norm": 2.8536453247070312,
1549
+ "learning_rate": 0.00481435344747724,
1550
+ "loss": 0.7141,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.39,
1555
+ "grad_norm": 1.831053614616394,
1556
+ "learning_rate": 0.004812586790934645,
1557
+ "loss": 0.6077,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.39,
1562
+ "grad_norm": 0.8879019618034363,
1563
+ "learning_rate": 0.004810812095469401,
1564
+ "loss": 0.5193,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.39,
1569
+ "grad_norm": 2.061986207962036,
1570
+ "learning_rate": 0.004809029367250635,
1571
+ "loss": 0.8594,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.39,
1576
+ "grad_norm": 2.325282573699951,
1577
+ "learning_rate": 0.004807238612475394,
1578
+ "loss": 0.7912,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.39,
1583
+ "grad_norm": 1.2494412660598755,
1584
+ "learning_rate": 0.004805439837368632,
1585
+ "loss": 0.3469,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.4,
1590
+ "grad_norm": 1.9265069961547852,
1591
+ "learning_rate": 0.004803633048183176,
1592
+ "loss": 0.4018,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.4,
1597
+ "grad_norm": 1.8633078336715698,
1598
+ "learning_rate": 0.004801818251199718,
1599
+ "loss": 0.6729,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.4,
1604
+ "grad_norm": 0.923722505569458,
1605
+ "learning_rate": 0.004799995452726783,
1606
+ "loss": 0.3185,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.4,
1611
+ "grad_norm": 0.7258334755897522,
1612
+ "learning_rate": 0.00479816465910071,
1613
+ "loss": 0.3711,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.4,
1618
+ "grad_norm": 8.977919578552246,
1619
+ "learning_rate": 0.004796325876685632,
1620
+ "loss": 0.6389,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.41,
1625
+ "grad_norm": 1.6173701286315918,
1626
+ "learning_rate": 0.004794479111873451,
1627
+ "loss": 0.8077,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.41,
1632
+ "grad_norm": 0.3017358183860779,
1633
+ "learning_rate": 0.004792624371083819,
1634
+ "loss": 0.1717,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.41,
1639
+ "grad_norm": 0.2644597887992859,
1640
+ "learning_rate": 0.004790761660764111,
1641
+ "loss": 0.1666,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.41,
1646
+ "grad_norm": 0.32617634534835815,
1647
+ "learning_rate": 0.004788890987389409,
1648
+ "loss": 0.1912,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.41,
1653
+ "grad_norm": 0.325503408908844,
1654
+ "learning_rate": 0.00478701235746247,
1655
+ "loss": 0.1745,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.41,
1660
+ "grad_norm": 0.36416152119636536,
1661
+ "learning_rate": 0.004785125777513716,
1662
+ "loss": 0.1877,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.42,
1667
+ "grad_norm": 0.17476695775985718,
1668
+ "learning_rate": 0.004783231254101201,
1669
+ "loss": 0.1534,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.42,
1674
+ "grad_norm": 0.33042675256729126,
1675
+ "learning_rate": 0.004781328793810592,
1676
+ "loss": 0.1552,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "grad_norm": 0.2617625892162323,
1682
+ "learning_rate": 0.004779418403255146,
1683
+ "loss": 0.1399,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.42,
1688
+ "grad_norm": 1.1109986305236816,
1689
+ "learning_rate": 0.004777500089075687,
1690
+ "loss": 0.2959,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.42,
1695
+ "grad_norm": 2.3491461277008057,
1696
+ "learning_rate": 0.004775573857940583,
1697
+ "loss": 0.4543,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.42,
1702
+ "grad_norm": 0.46592727303504944,
1703
+ "learning_rate": 0.004773639716545723,
1704
+ "loss": 0.1858,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.43,
1709
+ "grad_norm": 0.5546693801879883,
1710
+ "learning_rate": 0.0047716976716144915,
1711
+ "loss": 0.1889,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.43,
1716
+ "grad_norm": 1.0210996866226196,
1717
+ "learning_rate": 0.004769747729897749,
1718
+ "loss": 0.3422,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "grad_norm": 0.28574883937835693,
1724
+ "learning_rate": 0.004767789898173806,
1725
+ "loss": 0.1658,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.43,
1730
+ "grad_norm": 0.7777175903320312,
1731
+ "learning_rate": 0.004765824183248399,
1732
+ "loss": 0.2562,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.43,
1737
+ "grad_norm": 0.6948490142822266,
1738
+ "learning_rate": 0.0047638505919546685,
1739
+ "loss": 0.2538,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.44,
1744
+ "grad_norm": 0.3330797553062439,
1745
+ "learning_rate": 0.0047618691311531345,
1746
+ "loss": 0.1513,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.44,
1751
+ "grad_norm": 0.38396719098091125,
1752
+ "learning_rate": 0.004759879807731673,
1753
+ "loss": 0.172,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.44,
1758
+ "grad_norm": 0.3653559684753418,
1759
+ "learning_rate": 0.00475788262860549,
1760
+ "loss": 0.1862,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.44,
1765
+ "grad_norm": 0.20279382169246674,
1766
+ "learning_rate": 0.004755877600717102,
1767
+ "loss": 0.1508,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.44,
1772
+ "grad_norm": 0.2565731704235077,
1773
+ "learning_rate": 0.004753864731036307,
1774
+ "loss": 0.1877,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.44,
1779
+ "grad_norm": 0.33084383606910706,
1780
+ "learning_rate": 0.004751844026560163,
1781
+ "loss": 0.1754,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.45,
1786
+ "grad_norm": 0.21679562330245972,
1787
+ "learning_rate": 0.004749815494312963,
1788
+ "loss": 0.1466,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.45,
1793
+ "grad_norm": 0.3501861095428467,
1794
+ "learning_rate": 0.0047477791413462105,
1795
+ "loss": 0.1706,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.45,
1800
+ "grad_norm": 0.025921905413269997,
1801
+ "learning_rate": 0.004745734974738593,
1802
+ "loss": 0.1392,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.45,
1807
+ "grad_norm": 0.09658165276050568,
1808
+ "learning_rate": 0.004743683001595965,
1809
+ "loss": 0.1439,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.45,
1814
+ "grad_norm": 0.20020923018455505,
1815
+ "learning_rate": 0.004741623229051313,
1816
+ "loss": 0.1569,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.45,
1821
+ "grad_norm": 0.42405426502227783,
1822
+ "learning_rate": 0.004739555664264736,
1823
+ "loss": 0.1703,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.46,
1828
+ "grad_norm": 0.13087014853954315,
1829
+ "learning_rate": 0.004737480314423421,
1830
+ "loss": 0.1508,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.46,
1835
+ "grad_norm": 0.07791759818792343,
1836
+ "learning_rate": 0.0047353971867416175,
1837
+ "loss": 0.146,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.46,
1842
+ "grad_norm": 0.4447411596775055,
1843
+ "learning_rate": 0.004733306288460612,
1844
+ "loss": 0.1531,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.46,
1849
+ "grad_norm": 0.08216764032840729,
1850
+ "learning_rate": 0.0047312076268487,
1851
+ "loss": 0.1446,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.46,
1856
+ "grad_norm": 0.20517706871032715,
1857
+ "learning_rate": 0.004729101209201169,
1858
+ "loss": 0.1419,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.47,
1863
+ "grad_norm": 0.10283233225345612,
1864
+ "learning_rate": 0.004726987042840263,
1865
+ "loss": 0.146,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.47,
1870
+ "grad_norm": 0.2815485894680023,
1871
+ "learning_rate": 0.004724865135115163,
1872
+ "loss": 0.1565,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.47,
1877
+ "grad_norm": 0.14592072367668152,
1878
+ "learning_rate": 0.00472273549340196,
1879
+ "loss": 0.1406,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.47,
1884
+ "grad_norm": 0.48644283413887024,
1885
+ "learning_rate": 0.0047205981251036335,
1886
+ "loss": 0.1923,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.47,
1891
+ "grad_norm": 0.12471989542245865,
1892
+ "learning_rate": 0.004718453037650016,
1893
+ "loss": 0.1459,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.47,
1898
+ "grad_norm": 0.19896233081817627,
1899
+ "learning_rate": 0.004716300238497776,
1900
+ "loss": 0.1451,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.48,
1905
+ "grad_norm": 0.09358244389295578,
1906
+ "learning_rate": 0.004714139735130388,
1907
+ "loss": 0.144,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.48,
1912
+ "grad_norm": 0.13858307898044586,
1913
+ "learning_rate": 0.0047119715350581095,
1914
+ "loss": 0.1424,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.48,
1919
+ "grad_norm": 0.1569807082414627,
1920
+ "learning_rate": 0.0047097956458179505,
1921
+ "loss": 0.1359,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.48,
1926
+ "grad_norm": 0.5818818807601929,
1927
+ "learning_rate": 0.004707612074973653,
1928
+ "loss": 0.3056,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.48,
1933
+ "grad_norm": 0.33774101734161377,
1934
+ "learning_rate": 0.004705420830115658,
1935
+ "loss": 0.1647,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.48,
1940
+ "grad_norm": 0.22037023305892944,
1941
+ "learning_rate": 0.004703221918861084,
1942
+ "loss": 0.1546,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.49,
1947
+ "grad_norm": 0.2596515119075775,
1948
+ "learning_rate": 0.004701015348853699,
1949
+ "loss": 0.1631,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.49,
1954
+ "grad_norm": 0.013330257497727871,
1955
+ "learning_rate": 0.004698801127763896,
1956
+ "loss": 0.1225,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.49,
1961
+ "grad_norm": 0.12322998046875,
1962
+ "learning_rate": 0.004696579263288661,
1963
+ "loss": 0.1446,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.49,
1968
+ "grad_norm": 0.0688777044415474,
1969
+ "learning_rate": 0.004694349763151553,
1970
+ "loss": 0.1432,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.49,
1975
+ "grad_norm": 0.19567111134529114,
1976
+ "learning_rate": 0.00469211263510267,
1977
+ "loss": 0.1487,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.5,
1982
+ "grad_norm": 0.05435417592525482,
1983
+ "learning_rate": 0.004689867886918629,
1984
+ "loss": 0.1375,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.5,
1989
+ "grad_norm": 0.04905528575181961,
1990
+ "learning_rate": 0.004687615526402536,
1991
+ "loss": 0.1418,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.5,
1996
+ "grad_norm": 0.1233174130320549,
1997
+ "learning_rate": 0.004685355561383956,
1998
+ "loss": 0.1435,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.5,
2003
+ "grad_norm": 0.07042816281318665,
2004
+ "learning_rate": 0.00468308799971889,
2005
+ "loss": 0.1378,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.5,
2010
+ "grad_norm": 0.04000591114163399,
2011
+ "learning_rate": 0.0046808128492897465,
2012
+ "loss": 0.1414,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.5,
2017
+ "eval_loss": 0.1390625536441803,
2018
+ "eval_runtime": 20.6734,
2019
+ "eval_samples_per_second": 23.073,
2020
+ "eval_steps_per_second": 5.805,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.5,
2025
+ "grad_norm": 0.025082377716898918,
2026
+ "learning_rate": 0.004678530118005312,
2027
+ "loss": 0.1416,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.51,
2032
+ "grad_norm": 0.07912474870681763,
2033
+ "learning_rate": 0.004676239813800729,
2034
+ "loss": 0.1411,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.51,
2039
+ "grad_norm": 0.21243184804916382,
2040
+ "learning_rate": 0.004673941944637461,
2041
+ "loss": 0.1283,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.51,
2046
+ "grad_norm": 0.15224987268447876,
2047
+ "learning_rate": 0.00467163651850327,
2048
+ "loss": 0.1457,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.51,
2053
+ "grad_norm": 0.5148062109947205,
2054
+ "learning_rate": 0.004669323543412186,
2055
+ "loss": 0.1871,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.51,
2060
+ "grad_norm": 0.019062018021941185,
2061
+ "learning_rate": 0.004667003027404483,
2062
+ "loss": 0.1392,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.51,
2067
+ "grad_norm": 0.07946087419986725,
2068
+ "learning_rate": 0.004664674978546646,
2069
+ "loss": 0.1252,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.52,
2074
+ "grad_norm": 0.6038045287132263,
2075
+ "learning_rate": 0.004662339404931347,
2076
+ "loss": 0.2693,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.52,
2081
+ "grad_norm": 0.0627756342291832,
2082
+ "learning_rate": 0.004659996314677414,
2083
+ "loss": 0.1262,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.52,
2088
+ "grad_norm": 0.18904772400856018,
2089
+ "learning_rate": 0.004657645715929804,
2090
+ "loss": 0.1462,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.52,
2095
+ "grad_norm": 0.06582311540842056,
2096
+ "learning_rate": 0.0046552876168595774,
2097
+ "loss": 0.1279,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.52,
2102
+ "grad_norm": 0.075279101729393,
2103
+ "learning_rate": 0.004652922025663863,
2104
+ "loss": 0.117,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.53,
2109
+ "grad_norm": 0.5974221229553223,
2110
+ "learning_rate": 0.004650548950565835,
2111
+ "loss": 0.2998,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.53,
2116
+ "grad_norm": 0.47275882959365845,
2117
+ "learning_rate": 0.004648168399814684,
2118
+ "loss": 0.2351,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.53,
2123
+ "grad_norm": 0.371979683637619,
2124
+ "learning_rate": 0.004645780381685586,
2125
+ "loss": 0.1653,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.53,
2130
+ "grad_norm": 0.4610370695590973,
2131
+ "learning_rate": 0.004643384904479675,
2132
+ "loss": 0.2125,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.53,
2137
+ "grad_norm": 1.6561771631240845,
2138
+ "learning_rate": 0.004640981976524015,
2139
+ "loss": 0.3289,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.53,
2144
+ "grad_norm": 0.27472352981567383,
2145
+ "learning_rate": 0.004638571606171567,
2146
+ "loss": 0.1696,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.54,
2151
+ "grad_norm": 0.4794062077999115,
2152
+ "learning_rate": 0.004636153801801167,
2153
+ "loss": 0.2235,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.54,
2158
+ "grad_norm": 0.008101632818579674,
2159
+ "learning_rate": 0.004633728571817489,
2160
+ "loss": 0.1393,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.54,
2165
+ "grad_norm": 0.652870774269104,
2166
+ "learning_rate": 0.004631295924651024,
2167
+ "loss": 0.248,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.54,
2172
+ "grad_norm": 1.7754223346710205,
2173
+ "learning_rate": 0.0046288558687580415,
2174
+ "loss": 0.1255,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.54,
2179
+ "grad_norm": 0.47201940417289734,
2180
+ "learning_rate": 0.004626408412620567,
2181
+ "loss": 0.202,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.54,
2186
+ "grad_norm": 0.09795279055833817,
2187
+ "learning_rate": 0.004623953564746353,
2188
+ "loss": 0.1473,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.55,
2193
+ "grad_norm": 0.2842445373535156,
2194
+ "learning_rate": 0.004621491333668843,
2195
+ "loss": 0.1655,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.55,
2200
+ "grad_norm": 0.4557732045650482,
2201
+ "learning_rate": 0.004619021727947146,
2202
+ "loss": 0.2113,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.55,
2207
+ "grad_norm": 0.35528117418289185,
2208
+ "learning_rate": 0.00461654475616601,
2209
+ "loss": 0.1811,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.55,
2214
+ "grad_norm": 0.09643755853176117,
2215
+ "learning_rate": 0.004614060426935786,
2216
+ "loss": 0.1309,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.55,
2221
+ "grad_norm": 0.3083273768424988,
2222
+ "learning_rate": 0.0046115687488923985,
2223
+ "loss": 0.1479,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.56,
2228
+ "grad_norm": 0.6159799098968506,
2229
+ "learning_rate": 0.004609069730697322,
2230
+ "loss": 0.2834,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.56,
2235
+ "grad_norm": 0.3343372344970703,
2236
+ "learning_rate": 0.004606563381037544,
2237
+ "loss": 0.1887,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.56,
2242
+ "grad_norm": 0.04232935607433319,
2243
+ "learning_rate": 0.004604049708625538,
2244
+ "loss": 0.134,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.56,
2249
+ "grad_norm": 0.3046329617500305,
2250
+ "learning_rate": 0.004601528722199234,
2251
+ "loss": 0.1658,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.56,
2256
+ "grad_norm": 0.11442878097295761,
2257
+ "learning_rate": 0.004599000430521983,
2258
+ "loss": 0.1407,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "grad_norm": 0.47239166498184204,
2264
+ "learning_rate": 0.004596464842382534,
2265
+ "loss": 0.2002,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.57,
2270
+ "grad_norm": 0.0836309939622879,
2271
+ "learning_rate": 0.0045939219665949976,
2272
+ "loss": 0.1431,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.57,
2277
+ "grad_norm": 0.16392894089221954,
2278
+ "learning_rate": 0.004591371811998817,
2279
+ "loss": 0.1487,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.57,
2284
+ "grad_norm": 0.342985063791275,
2285
+ "learning_rate": 0.00458881438745874,
2286
+ "loss": 0.1738,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.57,
2291
+ "grad_norm": 0.015053262002766132,
2292
+ "learning_rate": 0.004586249701864783,
2293
+ "loss": 0.1315,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.57,
2298
+ "grad_norm": 0.04966433346271515,
2299
+ "learning_rate": 0.004583677764132207,
2300
+ "loss": 0.1341,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "grad_norm": 0.06436709314584732,
2306
+ "learning_rate": 0.004581098583201478,
2307
+ "loss": 0.1391,
2308
+ "step": 325
2309
+ },
2310
+ {
2311
+ "epoch": 0.58,
2312
+ "grad_norm": 0.007449989672750235,
2313
+ "learning_rate": 0.004578512168038244,
2314
+ "loss": 0.1406,
2315
+ "step": 326
2316
+ },
2317
+ {
2318
+ "epoch": 0.58,
2319
+ "grad_norm": 0.10672789067029953,
2320
+ "learning_rate": 0.004575918527633297,
2321
+ "loss": 0.1395,
2322
+ "step": 327
2323
+ },
2324
+ {
2325
+ "epoch": 0.58,
2326
+ "grad_norm": 0.6618992686271667,
2327
+ "learning_rate": 0.004573317671002549,
2328
+ "loss": 0.1401,
2329
+ "step": 328
2330
+ },
2331
+ {
2332
+ "epoch": 0.58,
2333
+ "grad_norm": 0.042477015405893326,
2334
+ "learning_rate": 0.004570709607186994,
2335
+ "loss": 0.1398,
2336
+ "step": 329
2337
+ },
2338
+ {
2339
+ "epoch": 0.58,
2340
+ "grad_norm": 0.13720382750034332,
2341
+ "learning_rate": 0.0045680943452526815,
2342
+ "loss": 0.1406,
2343
+ "step": 330
2344
+ },
2345
+ {
2346
+ "epoch": 0.59,
2347
+ "grad_norm": 0.09360575675964355,
2348
+ "learning_rate": 0.0045654718942906795,
2349
+ "loss": 0.1327,
2350
+ "step": 331
2351
+ },
2352
+ {
2353
+ "epoch": 0.59,
2354
+ "grad_norm": 0.0712946355342865,
2355
+ "learning_rate": 0.00456284226341705,
2356
+ "loss": 0.1313,
2357
+ "step": 332
2358
+ },
2359
+ {
2360
+ "epoch": 0.59,
2361
+ "grad_norm": 0.20698802173137665,
2362
+ "learning_rate": 0.0045602054617728096,
2363
+ "loss": 0.1557,
2364
+ "step": 333
2365
+ },
2366
+ {
2367
+ "epoch": 0.59,
2368
+ "grad_norm": 0.2574722170829773,
2369
+ "learning_rate": 0.004557561498523905,
2370
+ "loss": 0.1639,
2371
+ "step": 334
2372
+ },
2373
+ {
2374
+ "epoch": 0.59,
2375
+ "grad_norm": 0.28649410605430603,
2376
+ "learning_rate": 0.004554910382861178,
2377
+ "loss": 0.1636,
2378
+ "step": 335
2379
+ },
2380
+ {
2381
+ "epoch": 0.59,
2382
+ "grad_norm": 0.022425998002290726,
2383
+ "learning_rate": 0.00455225212400033,
2384
+ "loss": 0.1309,
2385
+ "step": 336
2386
+ },
2387
+ {
2388
+ "epoch": 0.6,
2389
+ "grad_norm": 0.5155848860740662,
2390
+ "learning_rate": 0.004549586731181896,
2391
+ "loss": 0.2228,
2392
+ "step": 337
2393
+ },
2394
+ {
2395
+ "epoch": 0.6,
2396
+ "grad_norm": 0.4240152835845947,
2397
+ "learning_rate": 0.004546914213671209,
2398
+ "loss": 0.2065,
2399
+ "step": 338
2400
+ },
2401
+ {
2402
+ "epoch": 0.6,
2403
+ "grad_norm": 0.30198466777801514,
2404
+ "learning_rate": 0.004544234580758367,
2405
+ "loss": 0.1581,
2406
+ "step": 339
2407
+ },
2408
+ {
2409
+ "epoch": 0.6,
2410
+ "grad_norm": 0.06408875435590744,
2411
+ "learning_rate": 0.0045415478417582065,
2412
+ "loss": 0.1331,
2413
+ "step": 340
2414
+ },
2415
+ {
2416
+ "epoch": 0.6,
2417
+ "grad_norm": 0.5334039926528931,
2418
+ "learning_rate": 0.004538854006010263,
2419
+ "loss": 0.2534,
2420
+ "step": 341
2421
+ },
2422
+ {
2423
+ "epoch": 0.61,
2424
+ "grad_norm": 0.3273349106311798,
2425
+ "learning_rate": 0.004536153082878738,
2426
+ "loss": 0.194,
2427
+ "step": 342
2428
+ },
2429
+ {
2430
+ "epoch": 0.61,
2431
+ "grad_norm": 0.48004212975502014,
2432
+ "learning_rate": 0.004533445081752478,
2433
+ "loss": 0.1795,
2434
+ "step": 343
2435
+ },
2436
+ {
2437
+ "epoch": 0.61,
2438
+ "grad_norm": 0.3054547607898712,
2439
+ "learning_rate": 0.004530730012044926,
2440
+ "loss": 0.1317,
2441
+ "step": 344
2442
+ },
2443
+ {
2444
+ "epoch": 0.61,
2445
+ "grad_norm": 0.17748180031776428,
2446
+ "learning_rate": 0.004528007883194103,
2447
+ "loss": 0.1479,
2448
+ "step": 345
2449
+ },
2450
+ {
2451
+ "epoch": 0.61,
2452
+ "grad_norm": 0.35406604409217834,
2453
+ "learning_rate": 0.0045252787046625624,
2454
+ "loss": 0.1637,
2455
+ "step": 346
2456
+ },
2457
+ {
2458
+ "epoch": 0.61,
2459
+ "grad_norm": 3.8229777812957764,
2460
+ "learning_rate": 0.0045225424859373685,
2461
+ "loss": 0.1387,
2462
+ "step": 347
2463
+ },
2464
+ {
2465
+ "epoch": 0.62,
2466
+ "grad_norm": 0.06019274517893791,
2467
+ "learning_rate": 0.0045197992365300565,
2468
+ "loss": 0.1359,
2469
+ "step": 348
2470
+ },
2471
+ {
2472
+ "epoch": 0.62,
2473
+ "grad_norm": 0.12145840376615524,
2474
+ "learning_rate": 0.0045170489659766,
2475
+ "loss": 0.1338,
2476
+ "step": 349
2477
+ },
2478
+ {
2479
+ "epoch": 0.62,
2480
+ "grad_norm": 0.04294529929757118,
2481
+ "learning_rate": 0.004514291683837383,
2482
+ "loss": 0.1242,
2483
+ "step": 350
2484
+ },
2485
+ {
2486
+ "epoch": 0.62,
2487
+ "grad_norm": 0.01808145083487034,
2488
+ "learning_rate": 0.004511527399697158,
2489
+ "loss": 0.1099,
2490
+ "step": 351
2491
+ },
2492
+ {
2493
+ "epoch": 0.62,
2494
+ "grad_norm": 0.4128633737564087,
2495
+ "learning_rate": 0.004508756123165021,
2496
+ "loss": 0.208,
2497
+ "step": 352
2498
+ },
2499
+ {
2500
+ "epoch": 0.62,
2501
+ "grad_norm": 0.49105894565582275,
2502
+ "learning_rate": 0.004505977863874374,
2503
+ "loss": 0.1505,
2504
+ "step": 353
2505
+ },
2506
+ {
2507
+ "epoch": 0.63,
2508
+ "grad_norm": 0.2189539074897766,
2509
+ "learning_rate": 0.0045031926314828925,
2510
+ "loss": 0.1322,
2511
+ "step": 354
2512
+ },
2513
+ {
2514
+ "epoch": 0.63,
2515
+ "grad_norm": 0.21910899877548218,
2516
+ "learning_rate": 0.00450040043567249,
2517
+ "loss": 0.1407,
2518
+ "step": 355
2519
+ },
2520
+ {
2521
+ "epoch": 0.63,
2522
+ "grad_norm": 0.19418276846408844,
2523
+ "learning_rate": 0.004497601286149288,
2524
+ "loss": 0.1345,
2525
+ "step": 356
2526
+ },
2527
+ {
2528
+ "epoch": 0.63,
2529
+ "grad_norm": 0.20071132481098175,
2530
+ "learning_rate": 0.0044947951926435775,
2531
+ "loss": 0.1526,
2532
+ "step": 357
2533
+ },
2534
+ {
2535
+ "epoch": 0.63,
2536
+ "grad_norm": 0.020260484889149666,
2537
+ "learning_rate": 0.004491982164909792,
2538
+ "loss": 0.1323,
2539
+ "step": 358
2540
+ },
2541
+ {
2542
+ "epoch": 0.64,
2543
+ "grad_norm": 0.02881007082760334,
2544
+ "learning_rate": 0.0044891622127264654,
2545
+ "loss": 0.1364,
2546
+ "step": 359
2547
+ },
2548
+ {
2549
+ "epoch": 0.64,
2550
+ "grad_norm": 0.14652033150196075,
2551
+ "learning_rate": 0.004486335345896204,
2552
+ "loss": 0.1451,
2553
+ "step": 360
2554
+ },
2555
+ {
2556
+ "epoch": 0.64,
2557
+ "grad_norm": 0.0947147086262703,
2558
+ "learning_rate": 0.004483501574245652,
2559
+ "loss": 0.1443,
2560
+ "step": 361
2561
+ },
2562
+ {
2563
+ "epoch": 0.64,
2564
+ "grad_norm": 0.2556053102016449,
2565
+ "learning_rate": 0.004480660907625452,
2566
+ "loss": 0.1479,
2567
+ "step": 362
2568
+ },
2569
+ {
2570
+ "epoch": 0.64,
2571
+ "grad_norm": 0.20763279497623444,
2572
+ "learning_rate": 0.0044778133559102195,
2573
+ "loss": 0.1389,
2574
+ "step": 363
2575
+ },
2576
+ {
2577
+ "epoch": 0.64,
2578
+ "grad_norm": 0.13740937411785126,
2579
+ "learning_rate": 0.004474958928998498,
2580
+ "loss": 0.1435,
2581
+ "step": 364
2582
+ },
2583
+ {
2584
+ "epoch": 0.65,
2585
+ "grad_norm": 0.2058638483285904,
2586
+ "learning_rate": 0.004472097636812735,
2587
+ "loss": 0.1466,
2588
+ "step": 365
2589
+ },
2590
+ {
2591
+ "epoch": 0.65,
2592
+ "grad_norm": 0.051496896892786026,
2593
+ "learning_rate": 0.004469229489299242,
2594
+ "loss": 0.1392,
2595
+ "step": 366
2596
+ },
2597
+ {
2598
+ "epoch": 0.65,
2599
+ "grad_norm": 0.09042657911777496,
2600
+ "learning_rate": 0.004466354496428157,
2601
+ "loss": 0.1382,
2602
+ "step": 367
2603
+ },
2604
+ {
2605
+ "epoch": 0.65,
2606
+ "grad_norm": 0.12760333716869354,
2607
+ "learning_rate": 0.0044634726681934194,
2608
+ "loss": 0.1433,
2609
+ "step": 368
2610
+ },
2611
+ {
2612
+ "epoch": 0.65,
2613
+ "grad_norm": 0.27251380681991577,
2614
+ "learning_rate": 0.004460584014612724,
2615
+ "loss": 0.1623,
2616
+ "step": 369
2617
+ },
2618
+ {
2619
+ "epoch": 0.65,
2620
+ "grad_norm": 0.05649774894118309,
2621
+ "learning_rate": 0.004457688545727497,
2622
+ "loss": 0.1303,
2623
+ "step": 370
2624
+ },
2625
+ {
2626
+ "epoch": 0.66,
2627
+ "grad_norm": 0.11580526828765869,
2628
+ "learning_rate": 0.004454786271602848,
2629
+ "loss": 0.1346,
2630
+ "step": 371
2631
+ },
2632
+ {
2633
+ "epoch": 0.66,
2634
+ "grad_norm": 0.06390184909105301,
2635
+ "learning_rate": 0.004451877202327553,
2636
+ "loss": 0.1361,
2637
+ "step": 372
2638
+ },
2639
+ {
2640
+ "epoch": 0.66,
2641
+ "grad_norm": 0.15965820848941803,
2642
+ "learning_rate": 0.004448961348013999,
2643
+ "loss": 0.1339,
2644
+ "step": 373
2645
+ },
2646
+ {
2647
+ "epoch": 0.66,
2648
+ "grad_norm": 0.14588314294815063,
2649
+ "learning_rate": 0.004446038718798166,
2650
+ "loss": 0.1458,
2651
+ "step": 374
2652
+ },
2653
+ {
2654
+ "epoch": 0.66,
2655
+ "grad_norm": 0.12371037155389786,
2656
+ "learning_rate": 0.00444310932483958,
2657
+ "loss": 0.1391,
2658
+ "step": 375
2659
+ },
2660
+ {
2661
+ "epoch": 0.67,
2662
+ "grad_norm": 0.07788253575563431,
2663
+ "learning_rate": 0.004440173176321287,
2664
+ "loss": 0.1364,
2665
+ "step": 376
2666
+ },
2667
+ {
2668
+ "epoch": 0.67,
2669
+ "grad_norm": 0.11355935782194138,
2670
+ "learning_rate": 0.004437230283449808,
2671
+ "loss": 0.1482,
2672
+ "step": 377
2673
+ },
2674
+ {
2675
+ "epoch": 0.67,
2676
+ "grad_norm": 0.2870952785015106,
2677
+ "learning_rate": 0.00443428065645511,
2678
+ "loss": 0.1406,
2679
+ "step": 378
2680
+ },
2681
+ {
2682
+ "epoch": 0.67,
2683
+ "grad_norm": 0.2574450373649597,
2684
+ "learning_rate": 0.004431324305590572,
2685
+ "loss": 0.1395,
2686
+ "step": 379
2687
+ },
2688
+ {
2689
+ "epoch": 0.67,
2690
+ "grad_norm": 0.2524733245372772,
2691
+ "learning_rate": 0.004428361241132943,
2692
+ "loss": 0.1589,
2693
+ "step": 380
2694
+ },
2695
+ {
2696
+ "epoch": 0.67,
2697
+ "grad_norm": 0.19581332802772522,
2698
+ "learning_rate": 0.004425391473382309,
2699
+ "loss": 0.1526,
2700
+ "step": 381
2701
+ },
2702
+ {
2703
+ "epoch": 0.68,
2704
+ "grad_norm": 0.33516693115234375,
2705
+ "learning_rate": 0.004422415012662061,
2706
+ "loss": 0.162,
2707
+ "step": 382
2708
+ },
2709
+ {
2710
+ "epoch": 0.68,
2711
+ "grad_norm": 0.036571960896253586,
2712
+ "learning_rate": 0.004419431869318853,
2713
+ "loss": 0.132,
2714
+ "step": 383
2715
+ },
2716
+ {
2717
+ "epoch": 0.68,
2718
+ "grad_norm": 0.4105718731880188,
2719
+ "learning_rate": 0.004416442053722569,
2720
+ "loss": 0.1958,
2721
+ "step": 384
2722
+ },
2723
+ {
2724
+ "epoch": 0.68,
2725
+ "grad_norm": 0.04623480886220932,
2726
+ "learning_rate": 0.004413445576266289,
2727
+ "loss": 0.1099,
2728
+ "step": 385
2729
+ },
2730
+ {
2731
+ "epoch": 0.68,
2732
+ "grad_norm": 0.049837108701467514,
2733
+ "learning_rate": 0.004410442447366249,
2734
+ "loss": 0.1171,
2735
+ "step": 386
2736
+ },
2737
+ {
2738
+ "epoch": 0.68,
2739
+ "grad_norm": 0.11380172520875931,
2740
+ "learning_rate": 0.0044074326774618065,
2741
+ "loss": 0.1357,
2742
+ "step": 387
2743
+ },
2744
+ {
2745
+ "epoch": 0.69,
2746
+ "grad_norm": 0.026750722900032997,
2747
+ "learning_rate": 0.004404416277015404,
2748
+ "loss": 0.1278,
2749
+ "step": 388
2750
+ },
2751
+ {
2752
+ "epoch": 0.69,
2753
+ "grad_norm": 0.2501939833164215,
2754
+ "learning_rate": 0.004401393256512534,
2755
+ "loss": 0.157,
2756
+ "step": 389
2757
+ },
2758
+ {
2759
+ "epoch": 0.69,
2760
+ "grad_norm": 0.1605241894721985,
2761
+ "learning_rate": 0.004398363626461701,
2762
+ "loss": 0.1323,
2763
+ "step": 390
2764
+ },
2765
+ {
2766
+ "epoch": 0.69,
2767
+ "grad_norm": 0.214866042137146,
2768
+ "learning_rate": 0.004395327397394384,
2769
+ "loss": 0.1361,
2770
+ "step": 391
2771
+ },
2772
+ {
2773
+ "epoch": 0.69,
2774
+ "grad_norm": 0.09074309468269348,
2775
+ "learning_rate": 0.004392284579865004,
2776
+ "loss": 0.1379,
2777
+ "step": 392
2778
+ },
2779
+ {
2780
+ "epoch": 0.7,
2781
+ "grad_norm": 0.25873011350631714,
2782
+ "learning_rate": 0.004389235184450881,
2783
+ "loss": 0.1363,
2784
+ "step": 393
2785
+ },
2786
+ {
2787
+ "epoch": 0.7,
2788
+ "grad_norm": 0.2037936896085739,
2789
+ "learning_rate": 0.004386179221752202,
2790
+ "loss": 0.1514,
2791
+ "step": 394
2792
+ },
2793
+ {
2794
+ "epoch": 0.7,
2795
+ "grad_norm": 0.2722165584564209,
2796
+ "learning_rate": 0.004383116702391987,
2797
+ "loss": 0.1577,
2798
+ "step": 395
2799
+ },
2800
+ {
2801
+ "epoch": 0.7,
2802
+ "grad_norm": 0.10281626135110855,
2803
+ "learning_rate": 0.004380047637016041,
2804
+ "loss": 0.1429,
2805
+ "step": 396
2806
+ },
2807
+ {
2808
+ "epoch": 0.7,
2809
+ "grad_norm": 0.09306799620389938,
2810
+ "learning_rate": 0.00437697203629293,
2811
+ "loss": 0.1296,
2812
+ "step": 397
2813
+ },
2814
+ {
2815
+ "epoch": 0.7,
2816
+ "grad_norm": 0.14582695066928864,
2817
+ "learning_rate": 0.004373889910913934,
2818
+ "loss": 0.1467,
2819
+ "step": 398
2820
+ },
2821
+ {
2822
+ "epoch": 0.71,
2823
+ "grad_norm": 0.40496793389320374,
2824
+ "learning_rate": 0.004370801271593016,
2825
+ "loss": 0.2055,
2826
+ "step": 399
2827
+ },
2828
+ {
2829
+ "epoch": 0.71,
2830
+ "grad_norm": 0.26718080043792725,
2831
+ "learning_rate": 0.0043677061290667805,
2832
+ "loss": 0.1661,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.71,
2837
+ "grad_norm": 0.07576692849397659,
2838
+ "learning_rate": 0.004364604494094441,
2839
+ "loss": 0.1379,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.71,
2844
+ "grad_norm": 0.009126567281782627,
2845
+ "learning_rate": 0.004361496377457777,
2846
+ "loss": 0.1292,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.71,
2851
+ "grad_norm": 0.10117870569229126,
2852
+ "learning_rate": 0.0043583817899611015,
2853
+ "loss": 0.1281,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.71,
2858
+ "grad_norm": 0.3940899968147278,
2859
+ "learning_rate": 0.0043552607424312195,
2860
+ "loss": 0.2176,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.72,
2865
+ "grad_norm": 0.5003737211227417,
2866
+ "learning_rate": 0.004352133245717394,
2867
+ "loss": 0.24,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.72,
2872
+ "grad_norm": 0.12259330600500107,
2873
+ "learning_rate": 0.0043489993106913035,
2874
+ "loss": 0.1427,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.72,
2879
+ "grad_norm": 0.25444668531417847,
2880
+ "learning_rate": 0.00434585894824701,
2881
+ "loss": 0.1562,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.72,
2886
+ "grad_norm": 0.385450154542923,
2887
+ "learning_rate": 0.0043427121693009165,
2888
+ "loss": 0.1894,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.72,
2893
+ "grad_norm": 0.5544012784957886,
2894
+ "learning_rate": 0.004339558984791732,
2895
+ "loss": 0.2228,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.73,
2900
+ "grad_norm": 0.08573274314403534,
2901
+ "learning_rate": 0.004336399405680431,
2902
+ "loss": 0.1344,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.73,
2907
+ "grad_norm": 0.06946069002151489,
2908
+ "learning_rate": 0.004333233442950219,
2909
+ "loss": 0.1379,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.73,
2914
+ "grad_norm": 0.08204808086156845,
2915
+ "learning_rate": 0.0043300611076064885,
2916
+ "loss": 0.1297,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.73,
2921
+ "grad_norm": 0.34511202573776245,
2922
+ "learning_rate": 0.004326882410676787,
2923
+ "loss": 0.1882,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.73,
2928
+ "grad_norm": 0.23568613827228546,
2929
+ "learning_rate": 0.004323697363210774,
2930
+ "loss": 0.1601,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.73,
2935
+ "grad_norm": 0.17524772882461548,
2936
+ "learning_rate": 0.004320505976280185,
2937
+ "loss": 0.1563,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.74,
2942
+ "grad_norm": 0.2556067407131195,
2943
+ "learning_rate": 0.004317308260978795,
2944
+ "loss": 0.1495,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.74,
2949
+ "grad_norm": 0.06263621896505356,
2950
+ "learning_rate": 0.004314104228422374,
2951
+ "loss": 0.1403,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.74,
2956
+ "grad_norm": 0.039918459951877594,
2957
+ "learning_rate": 0.004310893889748653,
2958
+ "loss": 0.1363,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.74,
2963
+ "grad_norm": 0.05942288413643837,
2964
+ "learning_rate": 0.004307677256117285,
2965
+ "loss": 0.134,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.74,
2970
+ "grad_norm": 0.40024271607398987,
2971
+ "learning_rate": 0.0043044543387098025,
2972
+ "loss": 0.1808,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.74,
2977
+ "grad_norm": 0.05047342926263809,
2978
+ "learning_rate": 0.0043012251487295865,
2979
+ "loss": 0.1361,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.75,
2984
+ "grad_norm": 0.1135723665356636,
2985
+ "learning_rate": 0.004297989697401817,
2986
+ "loss": 0.1451,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.75,
2991
+ "grad_norm": 0.2591931223869324,
2992
+ "learning_rate": 0.004294747995973442,
2993
+ "loss": 0.1599,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.75,
2998
+ "grad_norm": 0.2932302951812744,
2999
+ "learning_rate": 0.004291500055713138,
3000
+ "loss": 0.1634,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.75,
3005
+ "grad_norm": 0.03932628408074379,
3006
+ "learning_rate": 0.004288245887911263,
3007
+ "loss": 0.1441,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.75,
3012
+ "grad_norm": 0.39508238434791565,
3013
+ "learning_rate": 0.004284985503879828,
3014
+ "loss": 0.1786,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.75,
3019
+ "eval_loss": 0.15055102109909058,
3020
+ "eval_runtime": 20.8151,
3021
+ "eval_samples_per_second": 22.916,
3022
+ "eval_steps_per_second": 5.765,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.76,
3027
+ "grad_norm": 0.2353733777999878,
3028
+ "learning_rate": 0.004281718914952452,
3029
+ "loss": 0.155,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.76,
3034
+ "grad_norm": 0.14004479348659515,
3035
+ "learning_rate": 0.0042784461324843195,
3036
+ "loss": 0.1324,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 0.76,
3041
+ "grad_norm": 0.1574845165014267,
3042
+ "learning_rate": 0.004275167167852149,
3043
+ "loss": 0.1408,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 0.76,
3048
+ "grad_norm": 0.30841565132141113,
3049
+ "learning_rate": 0.004271882032454147,
3050
+ "loss": 0.1601,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 0.76,
3055
+ "grad_norm": 0.13977472484111786,
3056
+ "learning_rate": 0.004268590737709972,
3057
+ "loss": 0.1293,
3058
+ "step": 431
3059
+ },
3060
+ {
3061
+ "epoch": 0.76,
3062
+ "grad_norm": 0.02860305644571781,
3063
+ "learning_rate": 0.004265293295060692,
3064
+ "loss": 0.1345,
3065
+ "step": 432
3066
+ },
3067
+ {
3068
+ "epoch": 0.77,
3069
+ "grad_norm": 0.03978782147169113,
3070
+ "learning_rate": 0.004261989715968746,
3071
+ "loss": 0.1283,
3072
+ "step": 433
3073
+ },
3074
+ {
3075
+ "epoch": 0.77,
3076
+ "grad_norm": 0.13351576030254364,
3077
+ "learning_rate": 0.004258680011917905,
3078
+ "loss": 0.145,
3079
+ "step": 434
3080
+ },
3081
+ {
3082
+ "epoch": 0.77,
3083
+ "grad_norm": 0.10464897006750107,
3084
+ "learning_rate": 0.004255364194413231,
3085
+ "loss": 0.1445,
3086
+ "step": 435
3087
+ },
3088
+ {
3089
+ "epoch": 0.77,
3090
+ "grad_norm": 0.1459510177373886,
3091
+ "learning_rate": 0.00425204227498104,
3092
+ "loss": 0.139,
3093
+ "step": 436
3094
+ },
3095
+ {
3096
+ "epoch": 0.77,
3097
+ "grad_norm": 0.01213156245648861,
3098
+ "learning_rate": 0.004248714265168853,
3099
+ "loss": 0.1396,
3100
+ "step": 437
3101
+ },
3102
+ {
3103
+ "epoch": 0.77,
3104
+ "grad_norm": 0.3408389389514923,
3105
+ "learning_rate": 0.004245380176545369,
3106
+ "loss": 0.1747,
3107
+ "step": 438
3108
+ },
3109
+ {
3110
+ "epoch": 0.78,
3111
+ "grad_norm": 0.22795382142066956,
3112
+ "learning_rate": 0.004242040020700413,
3113
+ "loss": 0.1561,
3114
+ "step": 439
3115
+ },
3116
+ {
3117
+ "epoch": 0.78,
3118
+ "grad_norm": 0.1614357829093933,
3119
+ "learning_rate": 0.004238693809244904,
3120
+ "loss": 0.1425,
3121
+ "step": 440
3122
+ },
3123
+ {
3124
+ "epoch": 0.78,
3125
+ "grad_norm": 0.11894867569208145,
3126
+ "learning_rate": 0.004235341553810807,
3127
+ "loss": 0.1422,
3128
+ "step": 441
3129
+ },
3130
+ {
3131
+ "epoch": 0.78,
3132
+ "grad_norm": 0.14360809326171875,
3133
+ "learning_rate": 0.004231983266051104,
3134
+ "loss": 0.1434,
3135
+ "step": 442
3136
+ },
3137
+ {
3138
+ "epoch": 0.78,
3139
+ "grad_norm": 0.2520577907562256,
3140
+ "learning_rate": 0.004228618957639738,
3141
+ "loss": 0.1649,
3142
+ "step": 443
3143
+ },
3144
+ {
3145
+ "epoch": 0.79,
3146
+ "grad_norm": 0.0031091556884348392,
3147
+ "learning_rate": 0.004225248640271587,
3148
+ "loss": 0.1168,
3149
+ "step": 444
3150
+ },
3151
+ {
3152
+ "epoch": 0.79,
3153
+ "grad_norm": 0.2224978506565094,
3154
+ "learning_rate": 0.0042218723256624135,
3155
+ "loss": 0.1546,
3156
+ "step": 445
3157
+ },
3158
+ {
3159
+ "epoch": 0.79,
3160
+ "grad_norm": 0.044364750385284424,
3161
+ "learning_rate": 0.00421849002554883,
3162
+ "loss": 0.142,
3163
+ "step": 446
3164
+ },
3165
+ {
3166
+ "epoch": 0.79,
3167
+ "grad_norm": 0.40695396065711975,
3168
+ "learning_rate": 0.004215101751688253,
3169
+ "loss": 0.1561,
3170
+ "step": 447
3171
+ },
3172
+ {
3173
+ "epoch": 0.79,
3174
+ "grad_norm": 0.021591413766145706,
3175
+ "learning_rate": 0.004211707515858866,
3176
+ "loss": 0.1415,
3177
+ "step": 448
3178
+ },
3179
+ {
3180
+ "epoch": 0.79,
3181
+ "grad_norm": 0.0725998729467392,
3182
+ "learning_rate": 0.0042083073298595786,
3183
+ "loss": 0.1405,
3184
+ "step": 449
3185
+ },
3186
+ {
3187
+ "epoch": 0.8,
3188
+ "grad_norm": 0.06313532590866089,
3189
+ "learning_rate": 0.004204901205509981,
3190
+ "loss": 0.1388,
3191
+ "step": 450
3192
+ },
3193
+ {
3194
+ "epoch": 0.8,
3195
+ "grad_norm": 0.22441565990447998,
3196
+ "learning_rate": 0.00420148915465031,
3197
+ "loss": 0.1497,
3198
+ "step": 451
3199
+ },
3200
+ {
3201
+ "epoch": 0.8,
3202
+ "grad_norm": 0.20351390540599823,
3203
+ "learning_rate": 0.004198071189141399,
3204
+ "loss": 0.1388,
3205
+ "step": 452
3206
+ },
3207
+ {
3208
+ "epoch": 0.8,
3209
+ "grad_norm": 0.021423619240522385,
3210
+ "learning_rate": 0.004194647320864647,
3211
+ "loss": 0.1378,
3212
+ "step": 453
3213
+ },
3214
+ {
3215
+ "epoch": 0.8,
3216
+ "grad_norm": 0.017314398661255836,
3217
+ "learning_rate": 0.004191217561721966,
3218
+ "loss": 0.1392,
3219
+ "step": 454
3220
+ },
3221
+ {
3222
+ "epoch": 0.8,
3223
+ "grad_norm": 0.051026392728090286,
3224
+ "learning_rate": 0.004187781923635753,
3225
+ "loss": 0.1423,
3226
+ "step": 455
3227
+ },
3228
+ {
3229
+ "epoch": 0.81,
3230
+ "grad_norm": 0.229749858379364,
3231
+ "learning_rate": 0.004184340418548835,
3232
+ "loss": 0.1335,
3233
+ "step": 456
3234
+ },
3235
+ {
3236
+ "epoch": 0.81,
3237
+ "grad_norm": 0.2312706857919693,
3238
+ "learning_rate": 0.004180893058424435,
3239
+ "loss": 0.1613,
3240
+ "step": 457
3241
+ },
3242
+ {
3243
+ "epoch": 0.81,
3244
+ "grad_norm": 0.3830375075340271,
3245
+ "learning_rate": 0.0041774398552461315,
3246
+ "loss": 0.1757,
3247
+ "step": 458
3248
+ },
3249
+ {
3250
+ "epoch": 0.81,
3251
+ "grad_norm": 0.06416508555412292,
3252
+ "learning_rate": 0.004173980821017812,
3253
+ "loss": 0.1405,
3254
+ "step": 459
3255
+ },
3256
+ {
3257
+ "epoch": 0.81,
3258
+ "grad_norm": 0.1635216921567917,
3259
+ "learning_rate": 0.004170515967763634,
3260
+ "loss": 0.1471,
3261
+ "step": 460
3262
+ },
3263
+ {
3264
+ "epoch": 0.82,
3265
+ "grad_norm": 0.13280948996543884,
3266
+ "learning_rate": 0.0041670453075279825,
3267
+ "loss": 0.145,
3268
+ "step": 461
3269
+ },
3270
+ {
3271
+ "epoch": 0.82,
3272
+ "grad_norm": 0.04049176722764969,
3273
+ "learning_rate": 0.004163568852375431,
3274
+ "loss": 0.1401,
3275
+ "step": 462
3276
+ },
3277
+ {
3278
+ "epoch": 0.82,
3279
+ "grad_norm": 0.0036700742784887552,
3280
+ "learning_rate": 0.004160086614390695,
3281
+ "loss": 0.1372,
3282
+ "step": 463
3283
+ },
3284
+ {
3285
+ "epoch": 0.82,
3286
+ "grad_norm": 0.038986846804618835,
3287
+ "learning_rate": 0.004156598605678591,
3288
+ "loss": 0.1348,
3289
+ "step": 464
3290
+ },
3291
+ {
3292
+ "epoch": 0.82,
3293
+ "grad_norm": 0.006637162528932095,
3294
+ "learning_rate": 0.004153104838363997,
3295
+ "loss": 0.1374,
3296
+ "step": 465
3297
+ },
3298
+ {
3299
+ "epoch": 0.82,
3300
+ "grad_norm": 0.2121923714876175,
3301
+ "learning_rate": 0.00414960532459181,
3302
+ "loss": 0.1421,
3303
+ "step": 466
3304
+ },
3305
+ {
3306
+ "epoch": 0.83,
3307
+ "grad_norm": 0.206923246383667,
3308
+ "learning_rate": 0.0041461000765269,
3309
+ "loss": 0.1484,
3310
+ "step": 467
3311
+ },
3312
+ {
3313
+ "epoch": 0.83,
3314
+ "grad_norm": 0.1175004169344902,
3315
+ "learning_rate": 0.004142589106354071,
3316
+ "loss": 0.1399,
3317
+ "step": 468
3318
+ },
3319
+ {
3320
+ "epoch": 0.83,
3321
+ "grad_norm": 0.17498064041137695,
3322
+ "learning_rate": 0.004139072426278021,
3323
+ "loss": 0.1316,
3324
+ "step": 469
3325
+ },
3326
+ {
3327
+ "epoch": 0.83,
3328
+ "grad_norm": 0.07634201645851135,
3329
+ "learning_rate": 0.004135550048523292,
3330
+ "loss": 0.1417,
3331
+ "step": 470
3332
+ },
3333
+ {
3334
+ "epoch": 0.83,
3335
+ "grad_norm": 0.16571657359600067,
3336
+ "learning_rate": 0.004132021985334235,
3337
+ "loss": 0.1455,
3338
+ "step": 471
3339
+ },
3340
+ {
3341
+ "epoch": 0.84,
3342
+ "grad_norm": 0.015314368531107903,
3343
+ "learning_rate": 0.004128488248974962,
3344
+ "loss": 0.1112,
3345
+ "step": 472
3346
+ },
3347
+ {
3348
+ "epoch": 0.84,
3349
+ "grad_norm": 0.20316685736179352,
3350
+ "learning_rate": 0.004124948851729309,
3351
+ "loss": 0.1488,
3352
+ "step": 473
3353
+ },
3354
+ {
3355
+ "epoch": 0.84,
3356
+ "grad_norm": 0.014201296493411064,
3357
+ "learning_rate": 0.004121403805900789,
3358
+ "loss": 0.1216,
3359
+ "step": 474
3360
+ },
3361
+ {
3362
+ "epoch": 0.84,
3363
+ "grad_norm": 0.19993703067302704,
3364
+ "learning_rate": 0.004117853123812549,
3365
+ "loss": 0.1512,
3366
+ "step": 475
3367
+ },
3368
+ {
3369
+ "epoch": 0.84,
3370
+ "grad_norm": 0.2707497775554657,
3371
+ "learning_rate": 0.00411429681780733,
3372
+ "loss": 0.139,
3373
+ "step": 476
3374
+ },
3375
+ {
3376
+ "epoch": 0.84,
3377
+ "grad_norm": 0.37889397144317627,
3378
+ "learning_rate": 0.0041107349002474204,
3379
+ "loss": 0.1834,
3380
+ "step": 477
3381
+ },
3382
+ {
3383
+ "epoch": 0.85,
3384
+ "grad_norm": 0.2253105640411377,
3385
+ "learning_rate": 0.0041071673835146195,
3386
+ "loss": 0.1614,
3387
+ "step": 478
3388
+ },
3389
+ {
3390
+ "epoch": 0.85,
3391
+ "grad_norm": 0.4593866467475891,
3392
+ "learning_rate": 0.004103594280010186,
3393
+ "loss": 0.2019,
3394
+ "step": 479
3395
+ },
3396
+ {
3397
+ "epoch": 0.85,
3398
+ "grad_norm": 0.043750498443841934,
3399
+ "learning_rate": 0.004100015602154802,
3400
+ "loss": 0.1394,
3401
+ "step": 480
3402
+ },
3403
+ {
3404
+ "epoch": 0.85,
3405
+ "grad_norm": 0.11412761360406876,
3406
+ "learning_rate": 0.004096431362388525,
3407
+ "loss": 0.1423,
3408
+ "step": 481
3409
+ },
3410
+ {
3411
+ "epoch": 0.85,
3412
+ "grad_norm": 0.28491342067718506,
3413
+ "learning_rate": 0.004092841573170748,
3414
+ "loss": 0.17,
3415
+ "step": 482
3416
+ },
3417
+ {
3418
+ "epoch": 0.85,
3419
+ "grad_norm": 0.47304004430770874,
3420
+ "learning_rate": 0.004089246246980154,
3421
+ "loss": 0.2082,
3422
+ "step": 483
3423
+ },
3424
+ {
3425
+ "epoch": 0.86,
3426
+ "grad_norm": 0.1522788107395172,
3427
+ "learning_rate": 0.0040856453963146735,
3428
+ "loss": 0.1447,
3429
+ "step": 484
3430
+ },
3431
+ {
3432
+ "epoch": 0.86,
3433
+ "grad_norm": 0.16730143129825592,
3434
+ "learning_rate": 0.00408203903369144,
3435
+ "loss": 0.1478,
3436
+ "step": 485
3437
+ },
3438
+ {
3439
+ "epoch": 0.86,
3440
+ "grad_norm": 0.43677958846092224,
3441
+ "learning_rate": 0.0040784271716467506,
3442
+ "loss": 0.2072,
3443
+ "step": 486
3444
+ },
3445
+ {
3446
+ "epoch": 0.86,
3447
+ "grad_norm": 0.4553922414779663,
3448
+ "learning_rate": 0.004074809822736015,
3449
+ "loss": 0.2006,
3450
+ "step": 487
3451
+ },
3452
+ {
3453
+ "epoch": 0.86,
3454
+ "grad_norm": 0.016633370891213417,
3455
+ "learning_rate": 0.00407118699953372,
3456
+ "loss": 0.1424,
3457
+ "step": 488
3458
+ },
3459
+ {
3460
+ "epoch": 0.87,
3461
+ "grad_norm": 0.055445339530706406,
3462
+ "learning_rate": 0.004067558714633378,
3463
+ "loss": 0.135,
3464
+ "step": 489
3465
+ },
3466
+ {
3467
+ "epoch": 0.87,
3468
+ "grad_norm": 0.4653269052505493,
3469
+ "learning_rate": 0.004063924980647492,
3470
+ "loss": 0.2187,
3471
+ "step": 490
3472
+ },
3473
+ {
3474
+ "epoch": 0.87,
3475
+ "grad_norm": 0.16954103112220764,
3476
+ "learning_rate": 0.004060285810207503,
3477
+ "loss": 0.1444,
3478
+ "step": 491
3479
+ },
3480
+ {
3481
+ "epoch": 0.87,
3482
+ "grad_norm": 0.023942217230796814,
3483
+ "learning_rate": 0.004056641215963751,
3484
+ "loss": 0.1225,
3485
+ "step": 492
3486
+ },
3487
+ {
3488
+ "epoch": 0.87,
3489
+ "grad_norm": 0.09879268705844879,
3490
+ "learning_rate": 0.00405299121058543,
3491
+ "loss": 0.1279,
3492
+ "step": 493
3493
+ },
3494
+ {
3495
+ "epoch": 0.87,
3496
+ "grad_norm": 0.266255646944046,
3497
+ "learning_rate": 0.004049335806760545,
3498
+ "loss": 0.1514,
3499
+ "step": 494
3500
+ },
3501
+ {
3502
+ "epoch": 0.88,
3503
+ "grad_norm": 0.11469101160764694,
3504
+ "learning_rate": 0.004045675017195866,
3505
+ "loss": 0.1424,
3506
+ "step": 495
3507
+ },
3508
+ {
3509
+ "epoch": 0.88,
3510
+ "grad_norm": 0.20512178540229797,
3511
+ "learning_rate": 0.004042008854616883,
3512
+ "loss": 0.1594,
3513
+ "step": 496
3514
+ },
3515
+ {
3516
+ "epoch": 0.88,
3517
+ "grad_norm": 0.2791603207588196,
3518
+ "learning_rate": 0.004038337331767768,
3519
+ "loss": 0.1638,
3520
+ "step": 497
3521
+ },
3522
+ {
3523
+ "epoch": 0.88,
3524
+ "grad_norm": 0.08956770598888397,
3525
+ "learning_rate": 0.004034660461411321,
3526
+ "loss": 0.1403,
3527
+ "step": 498
3528
+ },
3529
+ {
3530
+ "epoch": 0.88,
3531
+ "grad_norm": 0.03588682785630226,
3532
+ "learning_rate": 0.004030978256328936,
3533
+ "loss": 0.1339,
3534
+ "step": 499
3535
+ },
3536
+ {
3537
+ "epoch": 0.88,
3538
+ "grad_norm": 0.25951525568962097,
3539
+ "learning_rate": 0.004027290729320545,
3540
+ "loss": 0.1654,
3541
+ "step": 500
3542
+ },
3543
+ {
3544
+ "epoch": 0.89,
3545
+ "grad_norm": 0.2677713632583618,
3546
+ "learning_rate": 0.004023597893204586,
3547
+ "loss": 0.1663,
3548
+ "step": 501
3549
+ },
3550
+ {
3551
+ "epoch": 0.89,
3552
+ "grad_norm": 0.10936828702688217,
3553
+ "learning_rate": 0.004019899760817948,
3554
+ "loss": 0.1314,
3555
+ "step": 502
3556
+ },
3557
+ {
3558
+ "epoch": 0.89,
3559
+ "grad_norm": 0.16409318149089813,
3560
+ "learning_rate": 0.004016196345015933,
3561
+ "loss": 0.1381,
3562
+ "step": 503
3563
+ },
3564
+ {
3565
+ "epoch": 0.89,
3566
+ "grad_norm": 0.12992282211780548,
3567
+ "learning_rate": 0.00401248765867221,
3568
+ "loss": 0.1297,
3569
+ "step": 504
3570
+ },
3571
+ {
3572
+ "epoch": 0.89,
3573
+ "grad_norm": 0.14716273546218872,
3574
+ "learning_rate": 0.004008773714678766,
3575
+ "loss": 0.1468,
3576
+ "step": 505
3577
+ },
3578
+ {
3579
+ "epoch": 0.9,
3580
+ "grad_norm": 0.07979045063257217,
3581
+ "learning_rate": 0.004005054525945865,
3582
+ "loss": 0.1406,
3583
+ "step": 506
3584
+ },
3585
+ {
3586
+ "epoch": 0.9,
3587
+ "grad_norm": 0.007667996920645237,
3588
+ "learning_rate": 0.004001330105402006,
3589
+ "loss": 0.1337,
3590
+ "step": 507
3591
+ },
3592
+ {
3593
+ "epoch": 0.9,
3594
+ "grad_norm": 0.30883529782295227,
3595
+ "learning_rate": 0.0039976004659938716,
3596
+ "loss": 0.157,
3597
+ "step": 508
3598
+ },
3599
+ {
3600
+ "epoch": 0.9,
3601
+ "grad_norm": 0.31749460101127625,
3602
+ "learning_rate": 0.0039938656206862854,
3603
+ "loss": 0.1493,
3604
+ "step": 509
3605
+ },
3606
+ {
3607
+ "epoch": 0.9,
3608
+ "grad_norm": 0.05762209743261337,
3609
+ "learning_rate": 0.00399012558246217,
3610
+ "loss": 0.1385,
3611
+ "step": 510
3612
+ },
3613
+ {
3614
+ "epoch": 0.9,
3615
+ "grad_norm": 0.14837181568145752,
3616
+ "learning_rate": 0.003986380364322498,
3617
+ "loss": 0.1375,
3618
+ "step": 511
3619
+ },
3620
+ {
3621
+ "epoch": 0.91,
3622
+ "grad_norm": 0.07137307524681091,
3623
+ "learning_rate": 0.003982629979286247,
3624
+ "loss": 0.1422,
3625
+ "step": 512
3626
+ },
3627
+ {
3628
+ "epoch": 0.91,
3629
+ "grad_norm": 0.07783070206642151,
3630
+ "learning_rate": 0.003978874440390361,
3631
+ "loss": 0.1287,
3632
+ "step": 513
3633
+ },
3634
+ {
3635
+ "epoch": 0.91,
3636
+ "grad_norm": 0.06229304522275925,
3637
+ "learning_rate": 0.003975113760689691,
3638
+ "loss": 0.1328,
3639
+ "step": 514
3640
+ },
3641
+ {
3642
+ "epoch": 0.91,
3643
+ "grad_norm": 0.0366533026099205,
3644
+ "learning_rate": 0.003971347953256965,
3645
+ "loss": 0.1174,
3646
+ "step": 515
3647
+ },
3648
+ {
3649
+ "epoch": 0.91,
3650
+ "grad_norm": 0.272078275680542,
3651
+ "learning_rate": 0.003967577031182733,
3652
+ "loss": 0.1629,
3653
+ "step": 516
3654
+ },
3655
+ {
3656
+ "epoch": 0.91,
3657
+ "grad_norm": 0.15681308507919312,
3658
+ "learning_rate": 0.003963801007575327,
3659
+ "loss": 0.1505,
3660
+ "step": 517
3661
+ },
3662
+ {
3663
+ "epoch": 0.92,
3664
+ "grad_norm": 0.03374667838215828,
3665
+ "learning_rate": 0.003960019895560808,
3666
+ "loss": 0.1395,
3667
+ "step": 518
3668
+ },
3669
+ {
3670
+ "epoch": 0.92,
3671
+ "grad_norm": 0.660275936126709,
3672
+ "learning_rate": 0.0039562337082829305,
3673
+ "loss": 0.1399,
3674
+ "step": 519
3675
+ },
3676
+ {
3677
+ "epoch": 0.92,
3678
+ "grad_norm": 0.34664130210876465,
3679
+ "learning_rate": 0.003952442458903087,
3680
+ "loss": 0.1449,
3681
+ "step": 520
3682
+ },
3683
+ {
3684
+ "epoch": 0.92,
3685
+ "grad_norm": 0.46702539920806885,
3686
+ "learning_rate": 0.003948646160600268,
3687
+ "loss": 0.1969,
3688
+ "step": 521
3689
+ },
3690
+ {
3691
+ "epoch": 0.92,
3692
+ "grad_norm": 0.06642913073301315,
3693
+ "learning_rate": 0.003944844826571018,
3694
+ "loss": 0.1387,
3695
+ "step": 522
3696
+ },
3697
+ {
3698
+ "epoch": 0.93,
3699
+ "grad_norm": 0.25087377429008484,
3700
+ "learning_rate": 0.003941038470029382,
3701
+ "loss": 0.164,
3702
+ "step": 523
3703
+ },
3704
+ {
3705
+ "epoch": 0.93,
3706
+ "grad_norm": 0.16770517826080322,
3707
+ "learning_rate": 0.003937227104206865,
3708
+ "loss": 0.1539,
3709
+ "step": 524
3710
+ },
3711
+ {
3712
+ "epoch": 0.93,
3713
+ "grad_norm": 0.1529918909072876,
3714
+ "learning_rate": 0.003933410742352388,
3715
+ "loss": 0.1451,
3716
+ "step": 525
3717
+ },
3718
+ {
3719
+ "epoch": 0.93,
3720
+ "grad_norm": 0.18149301409721375,
3721
+ "learning_rate": 0.003929589397732236,
3722
+ "loss": 0.135,
3723
+ "step": 526
3724
+ },
3725
+ {
3726
+ "epoch": 0.93,
3727
+ "grad_norm": 0.27569884061813354,
3728
+ "learning_rate": 0.003925763083630017,
3729
+ "loss": 0.1421,
3730
+ "step": 527
3731
+ },
3732
+ {
3733
+ "epoch": 0.93,
3734
+ "grad_norm": 0.2581075131893158,
3735
+ "learning_rate": 0.003921931813346611,
3736
+ "loss": 0.162,
3737
+ "step": 528
3738
+ },
3739
+ {
3740
+ "epoch": 0.94,
3741
+ "grad_norm": 0.33019861578941345,
3742
+ "learning_rate": 0.003918095600200127,
3743
+ "loss": 0.1779,
3744
+ "step": 529
3745
+ },
3746
+ {
3747
+ "epoch": 0.94,
3748
+ "grad_norm": 0.263822078704834,
3749
+ "learning_rate": 0.003914254457525862,
3750
+ "loss": 0.1634,
3751
+ "step": 530
3752
+ },
3753
+ {
3754
+ "epoch": 0.94,
3755
+ "grad_norm": 0.17741429805755615,
3756
+ "learning_rate": 0.003910408398676239,
3757
+ "loss": 0.1335,
3758
+ "step": 531
3759
+ },
3760
+ {
3761
+ "epoch": 0.94,
3762
+ "grad_norm": 0.0159847941249609,
3763
+ "learning_rate": 0.003906557437020779,
3764
+ "loss": 0.1361,
3765
+ "step": 532
3766
+ },
3767
+ {
3768
+ "epoch": 0.94,
3769
+ "grad_norm": 0.21829059720039368,
3770
+ "learning_rate": 0.0039027015859460397,
3771
+ "loss": 0.1635,
3772
+ "step": 533
3773
+ },
3774
+ {
3775
+ "epoch": 0.94,
3776
+ "grad_norm": 0.0067328461445868015,
3777
+ "learning_rate": 0.00389884085885558,
3778
+ "loss": 0.1327,
3779
+ "step": 534
3780
+ },
3781
+ {
3782
+ "epoch": 0.95,
3783
+ "grad_norm": 0.056643418967723846,
3784
+ "learning_rate": 0.0038949752691699057,
3785
+ "loss": 0.1381,
3786
+ "step": 535
3787
+ },
3788
+ {
3789
+ "epoch": 0.95,
3790
+ "grad_norm": 0.12431513518095016,
3791
+ "learning_rate": 0.0038911048303264272,
3792
+ "loss": 0.1345,
3793
+ "step": 536
3794
+ },
3795
+ {
3796
+ "epoch": 0.95,
3797
+ "grad_norm": 0.21443720161914825,
3798
+ "learning_rate": 0.00388722955577941,
3799
+ "loss": 0.1189,
3800
+ "step": 537
3801
+ },
3802
+ {
3803
+ "epoch": 0.95,
3804
+ "grad_norm": 0.10018088668584824,
3805
+ "learning_rate": 0.003883349458999931,
3806
+ "loss": 0.1354,
3807
+ "step": 538
3808
+ },
3809
+ {
3810
+ "epoch": 0.95,
3811
+ "grad_norm": 0.01695556379854679,
3812
+ "learning_rate": 0.0038794645534758277,
3813
+ "loss": 0.1092,
3814
+ "step": 539
3815
+ },
3816
+ {
3817
+ "epoch": 0.96,
3818
+ "grad_norm": 0.12418782711029053,
3819
+ "learning_rate": 0.003875574852711656,
3820
+ "loss": 0.1374,
3821
+ "step": 540
3822
+ },
3823
+ {
3824
+ "epoch": 0.96,
3825
+ "grad_norm": 0.31890037655830383,
3826
+ "learning_rate": 0.003871680370228639,
3827
+ "loss": 0.1865,
3828
+ "step": 541
3829
+ },
3830
+ {
3831
+ "epoch": 0.96,
3832
+ "grad_norm": 0.18868288397789001,
3833
+ "learning_rate": 0.003867781119564623,
3834
+ "loss": 0.1489,
3835
+ "step": 542
3836
+ },
3837
+ {
3838
+ "epoch": 0.96,
3839
+ "grad_norm": 0.14611639082431793,
3840
+ "learning_rate": 0.0038638771142740294,
3841
+ "loss": 0.1318,
3842
+ "step": 543
3843
+ },
3844
+ {
3845
+ "epoch": 0.96,
3846
+ "grad_norm": 0.7513630390167236,
3847
+ "learning_rate": 0.003859968367927805,
3848
+ "loss": 0.2047,
3849
+ "step": 544
3850
+ },
3851
+ {
3852
+ "epoch": 0.96,
3853
+ "grad_norm": 0.4710327386856079,
3854
+ "learning_rate": 0.0038560548941133812,
3855
+ "loss": 0.2374,
3856
+ "step": 545
3857
+ },
3858
+ {
3859
+ "epoch": 0.97,
3860
+ "grad_norm": 0.2790408134460449,
3861
+ "learning_rate": 0.003852136706434619,
3862
+ "loss": 0.1734,
3863
+ "step": 546
3864
+ },
3865
+ {
3866
+ "epoch": 0.97,
3867
+ "grad_norm": 0.13020950555801392,
3868
+ "learning_rate": 0.003848213818511769,
3869
+ "loss": 0.1434,
3870
+ "step": 547
3871
+ },
3872
+ {
3873
+ "epoch": 0.97,
3874
+ "grad_norm": 0.3076300323009491,
3875
+ "learning_rate": 0.0038442862439814177,
3876
+ "loss": 0.1752,
3877
+ "step": 548
3878
+ },
3879
+ {
3880
+ "epoch": 0.97,
3881
+ "grad_norm": 0.4267752766609192,
3882
+ "learning_rate": 0.003840353996496444,
3883
+ "loss": 0.198,
3884
+ "step": 549
3885
+ },
3886
+ {
3887
+ "epoch": 0.97,
3888
+ "grad_norm": 0.13199670612812042,
3889
+ "learning_rate": 0.003836417089725971,
3890
+ "loss": 0.1439,
3891
+ "step": 550
3892
+ },
3893
+ {
3894
+ "epoch": 0.97,
3895
+ "grad_norm": 0.26677653193473816,
3896
+ "learning_rate": 0.0038324755373553188,
3897
+ "loss": 0.1516,
3898
+ "step": 551
3899
+ },
3900
+ {
3901
+ "epoch": 0.98,
3902
+ "grad_norm": 0.24929864704608917,
3903
+ "learning_rate": 0.0038285293530859557,
3904
+ "loss": 0.152,
3905
+ "step": 552
3906
+ },
3907
+ {
3908
+ "epoch": 0.98,
3909
+ "grad_norm": 0.06707077473402023,
3910
+ "learning_rate": 0.003824578550635451,
3911
+ "loss": 0.1344,
3912
+ "step": 553
3913
+ },
3914
+ {
3915
+ "epoch": 0.98,
3916
+ "grad_norm": 0.10363825410604477,
3917
+ "learning_rate": 0.0038206231437374273,
3918
+ "loss": 0.1385,
3919
+ "step": 554
3920
+ },
3921
+ {
3922
+ "epoch": 0.98,
3923
+ "grad_norm": 0.31158074736595154,
3924
+ "learning_rate": 0.003816663146141514,
3925
+ "loss": 0.1318,
3926
+ "step": 555
3927
+ },
3928
+ {
3929
+ "epoch": 0.98,
3930
+ "grad_norm": 0.1382443606853485,
3931
+ "learning_rate": 0.0038126985716132977,
3932
+ "loss": 0.1431,
3933
+ "step": 556
3934
+ },
3935
+ {
3936
+ "epoch": 0.99,
3937
+ "grad_norm": 0.5671953558921814,
3938
+ "learning_rate": 0.0038087294339342764,
3939
+ "loss": 0.2439,
3940
+ "step": 557
3941
+ },
3942
+ {
3943
+ "epoch": 0.99,
3944
+ "grad_norm": 0.19111286103725433,
3945
+ "learning_rate": 0.003804755746901808,
3946
+ "loss": 0.153,
3947
+ "step": 558
3948
+ },
3949
+ {
3950
+ "epoch": 0.99,
3951
+ "grad_norm": 0.13765619695186615,
3952
+ "learning_rate": 0.0038007775243290667,
3953
+ "loss": 0.1409,
3954
+ "step": 559
3955
+ },
3956
+ {
3957
+ "epoch": 0.99,
3958
+ "grad_norm": 0.06567953526973724,
3959
+ "learning_rate": 0.003796794780044992,
3960
+ "loss": 0.1404,
3961
+ "step": 560
3962
+ },
3963
+ {
3964
+ "epoch": 0.99,
3965
+ "grad_norm": 0.2712881863117218,
3966
+ "learning_rate": 0.003792807527894242,
3967
+ "loss": 0.1616,
3968
+ "step": 561
3969
+ },
3970
+ {
3971
+ "epoch": 0.99,
3972
+ "grad_norm": 0.17540942132472992,
3973
+ "learning_rate": 0.0037888157817371456,
3974
+ "loss": 0.154,
3975
+ "step": 562
3976
+ },
3977
+ {
3978
+ "epoch": 1.0,
3979
+ "grad_norm": 0.14081189036369324,
3980
+ "learning_rate": 0.003784819555449651,
3981
+ "loss": 0.1415,
3982
+ "step": 563
3983
+ },
3984
+ {
3985
+ "epoch": 1.0,
3986
+ "grad_norm": 0.20738956332206726,
3987
+ "learning_rate": 0.0037808188629232836,
3988
+ "loss": 0.1504,
3989
+ "step": 564
3990
+ },
3991
+ {
3992
+ "epoch": 1.0,
3993
+ "grad_norm": 0.19751325249671936,
3994
+ "learning_rate": 0.0037768137180650913,
3995
+ "loss": 0.1516,
3996
+ "step": 565
3997
+ }
3998
+ ],
3999
+ "logging_steps": 1,
4000
+ "max_steps": 1695,
4001
+ "num_input_tokens_seen": 0,
4002
+ "num_train_epochs": 3,
4003
+ "save_steps": 565,
4004
+ "total_flos": 5.169945694856806e+16,
4005
+ "train_batch_size": 2,
4006
+ "trial_name": null,
4007
+ "trial_params": null
4008
+ }
checkpoint-565/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29422678c4871216e66e5816d677273e69d3b9eb007516a0010d9a7c35cd23f0
3
+ size 5752
checkpoint-565/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_storage": "uint8",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": 32768,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.40.0.dev0",
39
+ "use_cache": false,
40
+ "use_sliding_window": false,
41
+ "vocab_size": 151936
42
+ }