--- pipeline_tag: text-generation inference: true widget: - text: 'Hello!' example_title: Hello world group: Python library_name: transformers --- This model is randomly initialized, using the config from [THUDM/chatglm3-6b-128k](https://huggingface.co/THUDM/chatglm3-6b-128k/blob/main/config.json) but with smaller size. Note the model is in float16. Codes: ```python import transformers import torch import os from huggingface_hub import create_repo, upload_folder source_model_id = 'THUDM/chatglm3-6b-128k' tiny_random_name = 'chatglm3-tiny-random' save_path = f'/tmp/yujiepan/{tiny_random_name}' repo_id = f'yujiepan/{tiny_random_name}' config = transformers.AutoConfig.from_pretrained( source_model_id, trust_remote_code=True) config.hidden_size = 4 config.ffn_hidden_size = 6 config.num_attention_heads = 4 config.kv_channels = 2 config.num_layers = 2 config.torch_dtype = torch.float16 model = transformers.AutoModelForCausalLM.from_config( config, trust_remote_code=True, torch_dtype=torch.float16) model = model.half() tokenizer = transformers.AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True) # result = transformers.pipelines.pipeline( # 'text-generation', # model=model, tokenizer=tokenizer, # device=0, # max_new_tokens=16, # )('Hello') # print(result) model = model.cuda() response, history = model.chat(tokenizer, "Hi", history=[], max_length=32) print(response) model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) os.system(f'ls -alh {save_path}') create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) ```