File size: 1,430 Bytes
cdc1ddd
92f3f7a
cdc1ddd
 
 
92f3f7a
cdc1ddd
 
 
 
69e4d62
caa5876
 
 
 
 
 
 
 
e1b775b
caa5876
69e4d62
caa5876
 
 
e1b775b
 
caa5876
96808cb
 
e1b775b
caa5876
e1b775b
 
 
caa5876
 
e1b775b
 
caa5876
 
 
e1b775b
 
caa5876
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
  example_title: Hello world
  group: Python
---

This model is randomly initialized, using the config from [https://huggingface.co/tiiuae/falcon-7b-instruct] but with smaller size. 
Note the model is in float16.

Codes:
```python
import transformers
from optimum.intel.openvino import OVModelForCausalLM
import torch
import os
from huggingface_hub import create_repo, upload_folder

source_model_id = 'tiiuae/falcon-7b-instruct'
save_path = '/tmp/yujiepan/falcon-tiny-random'
repo_id = 'yujiepan/falcon-tiny-random'

config = transformers.AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True)
config.hidden_size = 8
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.torch_dtype = torch.float16

model = transformers.AutoModelForCausalLM.from_config(
    config, trust_remote_code=True)
model = model.half()
model.save_pretrained(save_path)

tokenizer = transformers.AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

# current not supported, might add this later
# ovmodel = OVModelForCausalLM.from_pretrained(
#     save_path, export=True, trust_remote_code=True)
# ovmodel.save_pretrained(save_path)

os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
```