--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: w2v2-ks-jpqd-quant-all-finetuned-student results: [] --- # w2v2-ks-jpqd-quant-all-finetuned-student This model is a fine-tuned version of [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0933 - Accuracy: 0.9769 This model is quantized. The input is also quantized. Structured Sparsity in transformer block linear layers is 64%. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 12.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4481 | 1.0 | 399 | 0.2105 | 0.9469 | | 5.6584 | 2.0 | 798 | 5.5480 | 0.9428 | | 8.7915 | 3.0 | 1197 | 8.6634 | 0.9601 | | 10.4775 | 4.0 | 1596 | 10.2819 | 0.9553 | | 10.9142 | 5.0 | 1995 | 10.7770 | 0.9657 | | 10.9478 | 6.0 | 2394 | 10.7637 | 0.9660 | | 0.2765 | 7.0 | 2793 | 0.1335 | 0.9678 | | 0.2532 | 8.0 | 3192 | 0.1075 | 0.9732 | | 0.2837 | 9.0 | 3591 | 0.1109 | 0.9700 | | 0.2 | 10.0 | 3990 | 0.1006 | 0.9765 | | 0.1742 | 11.0 | 4389 | 0.0930 | 0.9776 | | 0.1718 | 12.0 | 4788 | 0.0933 | 0.9769 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2