File size: 5,346 Bytes
4ab835a e8f4291 abcdbb9 e8f4291 6d333b6 e8f4291 cf12865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: diffusers
---
# yujiepan/stable-diffusion-3-tiny-random
This pipeline is intended for debugging. It is adapted from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers) with smaller size and randomly initialized parameters.
## Usage
```python
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("yujiepan/stable-diffusion-3-tiny-random", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(
"A cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=2,
guidance_scale=7.0,
).images[0]
image
```
## Codes
```python
import importlib
import torch
import transformers
import diffusers
import rich
def get_original_model_configs(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str):
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
model_configs = {}
for subfolder, import_strings in pipeline_config.items():
if subfolder.startswith("_"):
continue
module = importlib.import_module(".".join(import_strings[:-1]))
cls = getattr(module, import_strings[-1])
if issubclass(cls, transformers.PreTrainedModel):
config_class: transformers.PretrainedConfig = cls.config_class
config = config_class.from_pretrained(pipeline_id, subfolder=subfolder)
model_configs[subfolder] = config
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
config = cls.load_config(pipeline_id, subfolder=subfolder)
model_configs[subfolder] = config
return model_configs
def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]):
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
components = {}
for subfolder, import_strings in pipeline_config.items():
if subfolder.startswith("_"):
continue
module = importlib.import_module(".".join(import_strings[:-1]))
cls = getattr(module, import_strings[-1])
print(f"Loading:", ".".join(import_strings))
if issubclass(cls, transformers.PreTrainedModel):
config = model_configs[subfolder]
component = cls(config)
elif issubclass(cls, transformers.PreTrainedTokenizerBase):
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
config = model_configs[subfolder]
component = cls.from_config(config)
elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin):
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
else:
raise (f"unknown {subfolder}: {import_strings}")
components[subfolder] = component
pipeline = pipeline_cls(**components)
return pipeline
def get_pipeline():
torch.manual_seed(42)
pipeline_id = "stabilityai/stable-diffusion-3-medium-diffusers"
pipeline_cls = diffusers.StableDiffusion3Pipeline
model_configs = get_original_model_configs(pipeline_cls, pipeline_id)
rich.print(model_configs)
HIDDEN_SIZE = 8
model_configs["text_encoder"].hidden_size = HIDDEN_SIZE
model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2
model_configs["text_encoder"].num_attention_heads = 2
model_configs["text_encoder"].num_hidden_layers = 2
model_configs["text_encoder"].projection_dim = HIDDEN_SIZE
model_configs["text_encoder_2"].hidden_size = HIDDEN_SIZE
model_configs["text_encoder_2"].intermediate_size = HIDDEN_SIZE * 2
model_configs["text_encoder_2"].num_attention_heads = 2
model_configs["text_encoder_2"].num_hidden_layers = 2
model_configs["text_encoder_2"].projection_dim = HIDDEN_SIZE
model_configs["text_encoder_3"].d_model = HIDDEN_SIZE
model_configs["text_encoder_3"].d_ff = HIDDEN_SIZE * 2
model_configs["text_encoder_3"].d_kv = HIDDEN_SIZE // 2
model_configs["text_encoder_3"].num_heads = 2
model_configs["text_encoder_3"].num_layers = 2
model_configs["transformer"]["num_layers"] = 2
model_configs["transformer"]["num_attention_heads"] = 2
model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE // 2
model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE * 2
model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE
model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE
model_configs["vae"]["layers_per_block"] = 1
model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4
model_configs["vae"]["norm_num_groups"] = 2
model_configs["vae"]["latent_channels"] = 16
pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs)
return pipeline
pipeline = get_pipeline()
image = pipeline(
"hello world",
negative_prompt="runtime error",
num_inference_steps=2,
guidance_scale=7.0,
).images[0]
pipeline = pipeline.to(torch.float16)
pipeline.save_pretrained("/tmp/stable-diffusion-3-tiny-random")
pipeline.push_to_hub("yujiepan/stable-diffusion-3-tiny-random")
```
|