--- library_name: diffusers --- # yujiepan/stable-diffusion-3-tiny-random This pipeline is intended for debugging. It is adapted from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers) with smaller size and randomly initialized parameters. ## Usage ```python import torch from diffusers import StableDiffusion3Pipeline pipe = StableDiffusion3Pipeline.from_pretrained("yujiepan/stable-diffusion-3-tiny-random", torch_dtype=torch.float16) pipe = pipe.to("cuda") image = pipe( "A cat holding a sign that says hello world", negative_prompt="", num_inference_steps=2, guidance_scale=7.0, ).images[0] image ``` ## Codes ```python import importlib import torch import transformers import diffusers import rich def get_original_model_configs(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str): pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id) model_configs = {} for subfolder, import_strings in pipeline_config.items(): if subfolder.startswith("_"): continue module = importlib.import_module(".".join(import_strings[:-1])) cls = getattr(module, import_strings[-1]) if issubclass(cls, transformers.PreTrainedModel): config_class: transformers.PretrainedConfig = cls.config_class config = config_class.from_pretrained(pipeline_id, subfolder=subfolder) model_configs[subfolder] = config elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin): config = cls.load_config(pipeline_id, subfolder=subfolder) model_configs[subfolder] = config return model_configs def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]): pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id) components = {} for subfolder, import_strings in pipeline_config.items(): if subfolder.startswith("_"): continue module = importlib.import_module(".".join(import_strings[:-1])) cls = getattr(module, import_strings[-1]) print(f"Loading:", ".".join(import_strings)) if issubclass(cls, transformers.PreTrainedModel): config = model_configs[subfolder] component = cls(config) elif issubclass(cls, transformers.PreTrainedTokenizerBase): component = cls.from_pretrained(pipeline_id, subfolder=subfolder) elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin): config = model_configs[subfolder] component = cls.from_config(config) elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin): component = cls.from_pretrained(pipeline_id, subfolder=subfolder) else: raise (f"unknown {subfolder}: {import_strings}") components[subfolder] = component pipeline = pipeline_cls(**components) return pipeline def get_pipeline(): torch.manual_seed(42) pipeline_id = "stabilityai/stable-diffusion-3-medium-diffusers" pipeline_cls = diffusers.StableDiffusion3Pipeline model_configs = get_original_model_configs(pipeline_cls, pipeline_id) rich.print(model_configs) HIDDEN_SIZE = 8 model_configs["text_encoder"].hidden_size = HIDDEN_SIZE model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2 model_configs["text_encoder"].num_attention_heads = 2 model_configs["text_encoder"].num_hidden_layers = 2 model_configs["text_encoder"].projection_dim = HIDDEN_SIZE model_configs["text_encoder_2"].hidden_size = HIDDEN_SIZE model_configs["text_encoder_2"].intermediate_size = HIDDEN_SIZE * 2 model_configs["text_encoder_2"].num_attention_heads = 2 model_configs["text_encoder_2"].num_hidden_layers = 2 model_configs["text_encoder_2"].projection_dim = HIDDEN_SIZE model_configs["text_encoder_3"].d_model = HIDDEN_SIZE model_configs["text_encoder_3"].d_ff = HIDDEN_SIZE * 2 model_configs["text_encoder_3"].d_kv = HIDDEN_SIZE // 2 model_configs["text_encoder_3"].num_heads = 2 model_configs["text_encoder_3"].num_layers = 2 model_configs["transformer"]["num_layers"] = 2 model_configs["transformer"]["num_attention_heads"] = 2 model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE // 2 model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE * 2 model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE model_configs["vae"]["layers_per_block"] = 1 model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4 model_configs["vae"]["norm_num_groups"] = 2 model_configs["vae"]["latent_channels"] = 16 pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs) return pipeline pipeline = get_pipeline() image = pipeline( "hello world", negative_prompt="runtime error", num_inference_steps=2, guidance_scale=7.0, ).images[0] pipeline = pipeline.to(torch.float16) pipeline.save_pretrained("/tmp/stable-diffusion-3-tiny-random") pipeline.push_to_hub("yujiepan/stable-diffusion-3-tiny-random") ```