|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", |
|
"__module__": "stable_baselines3.common.policies", |
|
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", |
|
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3735e5c10>", |
|
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3735e5ca0>", |
|
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3735e5d30>", |
|
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3735e5dc0>", |
|
"_build": "<function ActorCriticPolicy._build at 0x7ff3735e5e50>", |
|
"forward": "<function ActorCriticPolicy.forward at 0x7ff3735e5ee0>", |
|
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3735e5f70>", |
|
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3735ea040>", |
|
"_predict": "<function ActorCriticPolicy._predict at 0x7ff3735ea0d0>", |
|
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3735ea160>", |
|
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3735ea1f0>", |
|
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3735ea280>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7ff3735e7880>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": {}, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", |
|
"dtype": "float32", |
|
"_shape": [ |
|
8 |
|
], |
|
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", |
|
"high": "[inf inf inf inf inf inf inf inf]", |
|
"bounded_below": "[False False False False False False False False]", |
|
"bounded_above": "[False False False False False False False False]", |
|
"_np_random": null |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.discrete.Discrete'>", |
|
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", |
|
"n": 4, |
|
"_shape": [], |
|
"dtype": "int64", |
|
"_np_random": null |
|
}, |
|
"n_envs": 16, |
|
"num_timesteps": 262144, |
|
"_total_timesteps": 250000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": null, |
|
"action_noise": null, |
|
"start_time": 1678785183049147585, |
|
"learning_rate": 0.0003, |
|
"tensorboard_log": null, |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"_last_obs": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOav7j3hszM+7i/2vVeKv76Aicw9uIUQvgAAAAAAAAAAZnb7O/b8dbrlC9c3UffHMvRZz7qw4vu2AACAPwAAgD/me2M92MW0P4rZMj5s8d++SSzpPVJ07jsAAAAAAAAAAAB6TT0i14w/oAJjPiR7Kr+x4ME951USPgAAAAAAAAAA5qCOPfwbeT2SUou9236wvv7HYj3ipzi9AAAAAAAAAACauwS+AsysP+7xm76waxm//WyPvuxlHb4AAAAAAAAAAHOXoj1WL1U//DILPlDqNr85sQo9axPevAAAAAAAAAAAzebSPDipy7urcTE8vfzFPLiLIL1A2qQ9AACAPwAAgD9NjXg9FEC7uuYWHjNFz/GuPZkRuQLBxbMAAIA/AACAP80Zi7zsVu277vNKPanGmzyUHDq99U7HPQAAgD8AAIA/ZlLbPXtmr7p12zC0BysKr0+qVroO2LEzAAAAAAAAgD9NExg9FICrusb0dzr+5WW2/fE4OCftjbkAAAAAAAAAAI0upj32FGq65ZxyOE/eWTM++6G4qEOOtwAAgD8AAIA/Tes9vRfsrj9XPpm+BumgvoOWuL1+VWu+AAAAAAAAAAAzlUq8RagzPojWuzwGLc++pccjPdIPU70AAAAAAAAAAFZSmr5riTA/7lg/PhZUEr/GPpq+emqEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_original_obs": null, |
|
"_episode_num": 0, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": -0.04857599999999995, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe6GA7WBHc0CUhpRSlIwBbJRLoowBdJRHQMB2jnKwIMV1fZQoaAZoCWgPQwicTrLV5WxvQJSGlFKUaBVLumgWR0DAdo+hysCDdX2UKGgGaAloD0MINQnekEY/c0CUhpRSlGgVS9doFkdAwHar/Ot4iXV9lChoBmgJaA9DCCk900vM2nJAlIaUUpRoFUupaBZHQMB2tB3qzJJ1fZQoaAZoCWgPQwjpf7kWrRR0QJSGlFKUaBVL02gWR0DAdr8n9ehPdX2UKGgGaAloD0MIq+l6omupbkCUhpRSlGgVS7ZoFkdAwHbJ+glF+nV9lChoBmgJaA9DCCvaHOc2CnNAlIaUUpRoFUuvaBZHQMB203uNPxh1fZQoaAZoCWgPQwgWinQ/Z1lxQJSGlFKUaBVLxGgWR0DAdtcchkiEdX2UKGgGaAloD0MIvtwnR8EGckCUhpRSlGgVS5poFkdAwHbdQ7cO9XV9lChoBmgJaA9DCJxsA3cgEXBAlIaUUpRoFUu4aBZHQMB26ZJsfq51fZQoaAZoCWgPQwhkc9U8h69yQJSGlFKUaBVLz2gWR0DAduugOBlMdX2UKGgGaAloD0MICme3lsnecUCUhpRSlGgVS6ZoFkdAwHbz19v0iHV9lChoBmgJaA9DCJV9VwQ/AHBAlIaUUpRoFUu8aBZHQMB29bTUiIN1fZQoaAZoCWgPQwid1JelHW1xQJSGlFKUaBVLq2gWR0DAdvd8stkGdX2UKGgGaAloD0MIumjIeBQLcUCUhpRSlGgVS7loFkdAwHb4nQ6ZIHV9lChoBmgJaA9DCLfUQV6Pym9AlIaUUpRoFUvAaBZHQMB2/DgydnV1fZQoaAZoCWgPQwi7m6c6JKFxQJSGlFKUaBVLvWgWR0DAdwDRplBhdX2UKGgGaAloD0MIURVT6eepcUCUhpRSlGgVS71oFkdAwHcb39JjD3V9lChoBmgJaA9DCKVquwm+P0FAlIaUUpRoFUtzaBZHQMB3IQKrq+t1fZQoaAZoCWgPQwhgkzXqoe9xQJSGlFKUaBVLy2gWR0DAeZ2d3B55dX2UKGgGaAloD0MIEmqGVBEDckCUhpRSlGgVS8loFkdAwHmnqPfbbnV9lChoBmgJaA9DCBdjYB1H0GdAlIaUUpRoFU3oA2gWR0DAeacdeY2LdX2UKGgGaAloD0MI7L5jeGzvb0CUhpRSlGgVS61oFkdAwHmtmknCwnV9lChoBmgJaA9DCPRNmgbFvHFAlIaUUpRoFUvEaBZHQMB5rsBQvYh1fZQoaAZoCWgPQwhc5QmEHflxQJSGlFKUaBVLvGgWR0DAebJ6By0bdX2UKGgGaAloD0MIDat4I/Pdb0CUhpRSlGgVS75oFkdAwHnFJ9RaYHV9lChoBmgJaA9DCIBlpUlpNnFAlIaUUpRoFUvCaBZHQMB5yVYhdMV1fZQoaAZoCWgPQwjja88sCQJuQJSGlFKUaBVLrGgWR0DAecki8nNQdX2UKGgGaAloD0MIeSEdHkKmcECUhpRSlGgVS7VoFkdAwHnLZ5AyEnV9lChoBmgJaA9DCGwIjss4/3BAlIaUUpRoFUvHaBZHQMB502AG0NV1fZQoaAZoCWgPQwga+FENO6RzQJSGlFKUaBVL0GgWR0DAeeEz/IbPdX2UKGgGaAloD0MIe/oI/OGZQ0CUhpRSlGgVS2toFkdAwHnuyprDZXV9lChoBmgJaA9DCHqKHCLuQHFAlIaUUpRoFUumaBZHQMB57+AVfu11fZQoaAZoCWgPQwiFlnX/2DtyQJSGlFKUaBVL/WgWR0DAefhW912adX2UKGgGaAloD0MIxCRcyCNZUkCUhpRSlGgVS4ZoFkdAwHn6ZaV2R3V9lChoBmgJaA9DCCx96IK6AnNAlIaUUpRoFUvIaBZHQMB6EYDDCP91fZQoaAZoCWgPQwj4UKIlT3txQJSGlFKUaBVLu2gWR0DAehRQpF1CdX2UKGgGaAloD0MIINRFCqXvckCUhpRSlGgVS/loFkdAwHofUWEbpHV9lChoBmgJaA9DCKSIDKt4X3JAlIaUUpRoFUvRaBZHQMB6IfmDDj11fZQoaAZoCWgPQwgOSphp++FxQJSGlFKUaBVLnWgWR0DAeilOARTTdX2UKGgGaAloD0MI/G1PkJjvcUCUhpRSlGgVS6toFkdAwHoyNe+mFnV9lChoBmgJaA9DCMOBkCwg7nJAlIaUUpRoFUvdaBZHQMB6MkPMB6t1fZQoaAZoCWgPQwjeyafHNrRzQJSGlFKUaBVLxWgWR0DAekYKc/dJdX2UKGgGaAloD0MIsoS1MTYtc0CUhpRSlGgVS9VoFkdAwHpJIFvAGnV9lChoBmgJaA9DCMJQhxWuq3NAlIaUUpRoFUvCaBZHQMB6TSvs7dV1fZQoaAZoCWgPQwifIoeIG0BxQJSGlFKUaBVLqmgWR0DAekzOs1badX2UKGgGaAloD0MIjErqBLT0cUCUhpRSlGgVS6VoFkdAwHpmf0VafXV9lChoBmgJaA9DCHKKjuTyI29AlIaUUpRoFUu3aBZHQMB6aQmE5AB1fZQoaAZoCWgPQwhHAg02NZlxQJSGlFKUaBVLvmgWR0DAenFnIyTIdX2UKGgGaAloD0MIjSRBuMJecUCUhpRSlGgVS8VoFkdAwHqF225QQHV9lChoBmgJaA9DCKtbPSe9FG9AlIaUUpRoFUvBaBZHQMB6o8ZLqUx1fZQoaAZoCWgPQwg7AU2EzfdxQJSGlFKUaBVLrWgWR0DAeqU7yQPqdX2UKGgGaAloD0MIuHU3T7WgcECUhpRSlGgVS7RoFkdAwHq5JK8L8nV9lChoBmgJaA9DCMgjuJGy+HBAlIaUUpRoFUvIaBZHQMB6wN7SiM51fZQoaAZoCWgPQwgBLzNs1LpxQJSGlFKUaBVL4GgWR0DAesNHOKO1dX2UKGgGaAloD0MI73N8tDikcUCUhpRSlGgVS7xoFkdAwHrMURnOB3V9lChoBmgJaA9DCJ86Vik9vW9AlIaUUpRoFUuwaBZHQMB623BP9DR1fZQoaAZoCWgPQwjt1jIZDrNyQJSGlFKUaBVL02gWR0DAeuAdMj/udX2UKGgGaAloD0MI8gnZeVtdcUCUhpRSlGgVS8JoFkdAwHrvoGIKt3V9lChoBmgJaA9DCCeiX1s/N3FAlIaUUpRoFUvIaBZHQMB6+pN0vGp1fZQoaAZoCWgPQwhnRdREHzxzQJSGlFKUaBVL1mgWR0DAeweuoxYadX2UKGgGaAloD0MIRzzZzUxEcUCUhpRSlGgVS8loFkdAwHsZ6yjYZnV9lChoBmgJaA9DCO8cylCVZ3JAlIaUUpRoFUvNaBZHQMB7GwokRjB1fZQoaAZoCWgPQwg/ARQjS2VwQJSGlFKUaBVLrWgWR0DAex2wRoRJdX2UKGgGaAloD0MIIsMq3si4ckCUhpRSlGgVS91oFkdAwHsx2mHgxnV9lChoBmgJaA9DCDEHQUdru3NAlIaUUpRoFUu8aBZHQMB7SK6e5Fx1fZQoaAZoCWgPQwjsppTXyslwQJSGlFKUaBVLwmgWR0DAe0zxNIsidX2UKGgGaAloD0MIcXFUbiLoc0CUhpRSlGgVS7JoFkdAwHtTgFX7tXV9lChoBmgJaA9DCHeDaK2ojXJAlIaUUpRoFUunaBZHQMB7XTlLeyl1fZQoaAZoCWgPQwhbIhecwRFxQJSGlFKUaBVLtmgWR0DAe1588cMmdX2UKGgGaAloD0MI5DJuaqBlcECUhpRSlGgVS6toFkdAwHtw3EQ5FXV9lChoBmgJaA9DCKdAZmdR4XFAlIaUUpRoFUvNaBZHQMB7deGXXy11fZQoaAZoCWgPQwih2uBEtKtxQJSGlFKUaBVLrGgWR0DAe4jQkX1rdX2UKGgGaAloD0MI+7K0UzM8ckCUhpRSlGgVS8FoFkdAwHuLXvH933V9lChoBmgJaA9DCDogCfs2u3JAlIaUUpRoFUu3aBZHQMB7nvAO8TV1fZQoaAZoCWgPQwhD5zV2iW9yQJSGlFKUaBVLpWgWR0DAe7SM72csdX2UKGgGaAloD0MIVmEzwEWmcECUhpRSlGgVS8BoFkdAwHu192HLzXV9lChoBmgJaA9DCDP5ZpsbuXFAlIaUUpRoFUu3aBZHQMB7w4vFm4B1fZQoaAZoCWgPQwjBjv8CAc1xQJSGlFKUaBVLyGgWR0DAe9OUhV2idX2UKGgGaAloD0MI/B2KAr14ckCUhpRSlGgVS7poFkdAwHviuHN5dHV9lChoBmgJaA9DCFuxv+wem3NAlIaUUpRoFUu+aBZHQMB8BQNkOI91fZQoaAZoCWgPQwhd+MH51EF0QJSGlFKUaBVLtGgWR0DAfBD0Dlo2dX2UKGgGaAloD0MIXOZ0WYx1ckCUhpRSlGgVS6RoFkdAwHwVgBLf13V9lChoBmgJaA9DCLFNKhorVXFAlIaUUpRoFUvUaBZHQMB8JQyZa3Z1fZQoaAZoCWgPQwjSqSuf5VNxQJSGlFKUaBVLy2gWR0DAfCdYuCf6dX2UKGgGaAloD0MI7BLVW0MJdECUhpRSlGgVS+1oFkdAwHwxZamoBXV9lChoBmgJaA9DCOvgYG9iLG9AlIaUUpRoFUuzaBZHQMB8PzkZJkJ1fZQoaAZoCWgPQwibrie67gFzQJSGlFKUaBVL2WgWR0DAfE6NsFdLdX2UKGgGaAloD0MI9Gvrp79wcUCUhpRSlGgVS8VoFkdAwHxODK5kLHV9lChoBmgJaA9DCLPw9bWub3FAlIaUUpRoFUu2aBZHQMB8aaM72ct1fZQoaAZoCWgPQwj5SEp6GBNwQJSGlFKUaBVLqGgWR0DAfHo/qxC6dX2UKGgGaAloD0MI9RH4ww9nc0CUhpRSlGgVS8VoFkdAwHx6LVnVXnV9lChoBmgJaA9DCFMGDmhpT3BAlIaUUpRoFUuoaBZHQMB8iM1TBIp1fZQoaAZoCWgPQwi2+BQAY81lQJSGlFKUaBVN6ANoFkdAwHyUjrzGxXV9lChoBmgJaA9DCMvXZfiPpnFAlIaUUpRoFUvcaBZHQMB8nZwGW2R1fZQoaAZoCWgPQwg+z582KuByQJSGlFKUaBVLzGgWR0DAfLz876pHdX2UKGgGaAloD0MINxYUBiUSc0CUhpRSlGgVS8BoFkdAwHy++h4+r3V9lChoBmgJaA9DCLjmjv5XeHJAlIaUUpRoFUuzaBZHQMB8wcENe+p1fZQoaAZoCWgPQwiR1ELJZOdwQJSGlFKUaBVLqGgWR0DAfMn6hxo7dX2UKGgGaAloD0MIzv5Aue3BcECUhpRSlGgVS7xoFkdAwHzMur6tT3VlLg==" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 808, |
|
"n_steps": 1024, |
|
"gamma": 0.995, |
|
"gae_lambda": 0.95, |
|
"ent_coef": 0.01, |
|
"vf_coef": 0.5, |
|
"max_grad_norm": 0.5, |
|
"batch_size": 64, |
|
"n_epochs": 4, |
|
"clip_range": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"clip_range_vf": null, |
|
"normalize_advantage": true, |
|
"target_kl": null |
|
} |