yumingyi commited on
Commit
13131c7
·
1 Parent(s): 0de6a41

Updated PPO LunarLander

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 278.25 +/- 16.02
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 276.54 +/- 21.79
20
  name: mean_reward
21
  verified: false
22
  ---
ThirdLunarLander2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155022670cea25b655ee28604d0d333f48969b7afc74af2d39ad388c4e18095f
3
+ size 147378
ThirdLunarLander2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ThirdLunarLander2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1507328,
47
+ "_total_timesteps": 1500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678716297981303349,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMnuDvGZ4M/fUr5vO8aC7/p1wA+WqRYPAAAAAAAAAAA5okrvT1KbbvLcpg9EtFhviwQs7xfRZc+AACAPwAAAABG5iW+e5L0PlZyTz6J9qm+Wys8vTAsaz0AAAAAAAAAAAAwa7x73oi6oAMbOFpbEzOK4Ua6o500twAAgD8AAIA/w9aOvsjiFD+E3MI8fcHlvke/ub74IOM9AAAAAAAAAADGaCG+jyEkP8ozOD2hM+e+NFfUvZpQQT0AAAAAAAAAAJOBQb5zMRI/g9ZKPnV61L44ecS99t1fPgAAAAAAAAAAZtKavPbMRbodlt26GS2DtvZHljvKBgA6AACAPwAAgD8AD7K8JVQpPk60/z0q6YS+wOcrvcUodjsAAAAAAAAAAM0M/jzhcLa6E/epNvEBlzF0mpc3pAXGtQAAgD8AAIA/APPqvMMhaLqrB4w5d7ODsaikWrtUgKK4AACAPwAAgD+TF1Q+6od3PwgCxDx+sQC/YAbsPpJGfr0AAAAAAAAAAJopd7vcvEG8S+VhPB4TFD3v8cg9w4jrvQAAgD8AAIA/zfKVPGYyuj+8HJo+XemDPqgks7vhSgU7AAAAAAAAAABmnAc8ru+Bum2D1DZ6zPUx6JwROxMr+7UAAIA/AACAP7OfDT7ADys/sM1JvpAB475t/ZA9C/TOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh1EQPD6rckCUhpRSlIwBbJRL/YwBdJRHQKhjy71ZkkN1fZQoaAZoCWgPQwiIvOXqBwpxQJSGlFKUaBVNQgFoFkdAqGPJcJMQE3V9lChoBmgJaA9DCCUH7Gqym3NAlIaUUpRoFU0ZAWgWR0CoY++F+NLldX2UKGgGaAloD0MIc0nVdpPKcUCUhpRSlGgVS+5oFkdAqGQLcEeQuHV9lChoBmgJaA9DCGh3SDFAQXNAlIaUUpRoFU08AWgWR0CoZEblq8DkdX2UKGgGaAloD0MIi8QENXyNcUCUhpRSlGgVTRIBaBZHQKhkTmwqy4Z1fZQoaAZoCWgPQwiUMqmhDcBxQJSGlFKUaBVNKAFoFkdAqGS2a+evp3V9lChoBmgJaA9DCDvkZrgBg3NAlIaUUpRoFUvsaBZHQKhlZYr8R+V1fZQoaAZoCWgPQwixFTQtMcJyQJSGlFKUaBVNWQJoFkdAqGXeJN0vG3V9lChoBmgJaA9DCCkEcokjO3FAlIaUUpRoFU0sAWgWR0CoZoOvUz9CdX2UKGgGaAloD0MIVYmytxS8bUCUhpRSlGgVS9loFkdAqGaYD3dsSHV9lChoBmgJaA9DCI+K/zvilnFAlIaUUpRoFU2dAWgWR0CoZvgdn004dX2UKGgGaAloD0MII4eImxMHckCUhpRSlGgVS/doFkdAqGb1XzUZvXV9lChoBmgJaA9DCMqpnWFqA3JAlIaUUpRoFUv5aBZHQKhnHP2wmmd1fZQoaAZoCWgPQwh4J58eG+1wQJSGlFKUaBVL9GgWR0CoZzNCJGe+dX2UKGgGaAloD0MIbCHIQYmocECUhpRSlGgVTQsBaBZHQKhnTb0voNd1fZQoaAZoCWgPQwi3tvC81BVyQJSGlFKUaBVL/GgWR0CoZ3Gax5cDdX2UKGgGaAloD0MIF0Z6UTtjcUCUhpRSlGgVTYMBaBZHQKhnfW0Z3s51fZQoaAZoCWgPQwjooiHjkZVyQJSGlFKUaBVNKgFoFkdAqGhOryUcGXV9lChoBmgJaA9DCFtB0xJrW3BAlIaUUpRoFU1qAWgWR0CoaFKO938odX2UKGgGaAloD0MIk3NiDy0XckCUhpRSlGgVTR8BaBZHQKhoqYk3S8d1fZQoaAZoCWgPQwgmqOFb2DNvQJSGlFKUaBVNjAFoFkdAqGnKXpnpS3V9lChoBmgJaA9DCGQ+INCZgHFAlIaUUpRoFU0ZAWgWR0CoafGKZUkwdX2UKGgGaAloD0MIO1W+ZyRlcECUhpRSlGgVS+1oFkdAqGnxbD/EO3V9lChoBmgJaA9DCKg3o+arMHFAlIaUUpRoFUvKaBZHQKhp+8oQWep1fZQoaAZoCWgPQwjrdCDr6WBwQJSGlFKUaBVL4GgWR0CoaiYkNWludX2UKGgGaAloD0MIlkG1wQnsckCUhpRSlGgVTSsBaBZHQKhq8LCvX9R1fZQoaAZoCWgPQwiq7/yiBJByQJSGlFKUaBVNhQFoFkdAqGsFCkXUIHV9lChoBmgJaA9DCBhA+FAixnJAlIaUUpRoFUv/aBZHQKhrLtShrWR1fZQoaAZoCWgPQwh+HM2RlUtzQJSGlFKUaBVNLwJoFkdAqGtY4ACGOHV9lChoBmgJaA9DCPjB+dTxA3JAlIaUUpRoFUvfaBZHQKhrqhje9Bd1fZQoaAZoCWgPQwgA/5QqUdNxQJSGlFKUaBVNKAFoFkdAqGu9e2NNrXV9lChoBmgJaA9DCIVbPpISDHJAlIaUUpRoFU1QAWgWR0CobCW4mTkidX2UKGgGaAloD0MIVWe1wN7IcUCUhpRSlGgVTYkBaBZHQKhsqHmig011fZQoaAZoCWgPQwhClgUT/whyQJSGlFKUaBVNjQFoFkdAqGzqoybhFXV9lChoBmgJaA9DCPfoDfeRgXBAlIaUUpRoFU0jAWgWR0CobPmhufmLdX2UKGgGaAloD0MIQfD49u7OcUCUhpRSlGgVS+doFkdAqG0k8ifQKXV9lChoBmgJaA9DCKZIvhKI7XBAlIaUUpRoFUvtaBZHQKhtU2tMfzV1fZQoaAZoCWgPQwiPxTap6AFwQJSGlFKUaBVL+2gWR0CobYJvYODrdX2UKGgGaAloD0MIk+LjE3LQc0CUhpRSlGgVTYEBaBZHQKht0UY8+zN1fZQoaAZoCWgPQwihndMskD1zQJSGlFKUaBVNEAFoFkdAqG31GEwnIHV9lChoBmgJaA9DCDPhl/r5UHFAlIaUUpRoFUvYaBZHQKht+Lv1DjR1fZQoaAZoCWgPQwgOaVTgpG5yQJSGlFKUaBVNLgFoFkdAqG4sdgfEGnV9lChoBmgJaA9DCN+JWS/GbXFAlIaUUpRoFUv2aBZHQKhuQyeqaPV1fZQoaAZoCWgPQwi+T1WhwWByQJSGlFKUaBVL7mgWR0CoekiswL3LdX2UKGgGaAloD0MI2GK3z2qFcECUhpRSlGgVTTEBaBZHQKh7/UPQOWl1fZQoaAZoCWgPQwgXSiantjRyQJSGlFKUaBVL12gWR0CofD7gbZOBdX2UKGgGaAloD0MIjrETXgK+bkCUhpRSlGgVS/1oFkdAqHygJC0F83V9lChoBmgJaA9DCAqi7gNQqXNAlIaUUpRoFUvUaBZHQKh8pzjFQ2x1fZQoaAZoCWgPQwjOjlTfeQZxQJSGlFKUaBVNKgFoFkdAqH0EP+XJHXV9lChoBmgJaA9DCKncRC1NjnJAlIaUUpRoFU0AAWgWR0CofStYbKigdX2UKGgGaAloD0MITMecZ6yccECUhpRSlGgVTXgBaBZHQKh9NqKP4mF1fZQoaAZoCWgPQwgv3SQGwbBxQJSGlFKUaBVL2mgWR0CofVpBX0XhdX2UKGgGaAloD0MI7niT32KlcECUhpRSlGgVS/BoFkdAqH17KxLTQXV9lChoBmgJaA9DCLOxEvNsRXNAlIaUUpRoFU1FAWgWR0CofaRUedTYdX2UKGgGaAloD0MIxFxStd0CcECUhpRSlGgVTdoBaBZHQKh+E7Ciypt1fZQoaAZoCWgPQwg5DVGF/ylxQJSGlFKUaBVNAAFoFkdAqH562phnanV9lChoBmgJaA9DCHy5T47C63BAlIaUUpRoFU0xAWgWR0CofsrJbMX8dX2UKGgGaAloD0MIPpepSTB3c0CUhpRSlGgVTUoBaBZHQKh+3+2E0zl1fZQoaAZoCWgPQwgfDhKivOZxQJSGlFKUaBVNQAFoFkdAqH8ViYsunXV9lChoBmgJaA9DCP3YJD/if0NAlIaUUpRoFUu8aBZHQKh/icBltj11fZQoaAZoCWgPQwhUHXIz3JNwQJSGlFKUaBVL6GgWR0Cof96QvHtGdX2UKGgGaAloD0MIvaqzWuAqc0CUhpRSlGgVTSkBaBZHQKiAKGahHsl1fZQoaAZoCWgPQwhfKcsQBzxyQJSGlFKUaBVL+GgWR0CogIczQ/ordX2UKGgGaAloD0MI/WZiupAcc0CUhpRSlGgVS/poFkdAqIDEk+otMHV9lChoBmgJaA9DCGH8NO5NnHFAlIaUUpRoFUvzaBZHQKiA0I0qH451fZQoaAZoCWgPQwiZRpOLsWlyQJSGlFKUaBVNDwFoFkdAqIDxU1hsqXV9lChoBmgJaA9DCF4R/G8ldW1AlIaUUpRoFU1IAWgWR0CogUzgMtsfdX2UKGgGaAloD0MIs1w2Ouf1cECUhpRSlGgVTQ4BaBZHQKiBblbu+h51fZQoaAZoCWgPQwjZI9QMqZ1xQJSGlFKUaBVNjAJoFkdAqIF2St/4I3V9lChoBmgJaA9DCIwPs5dtH3FAlIaUUpRoFU0YAWgWR0CogfSV4X41dX2UKGgGaAloD0MI+3PRkPFUbkCUhpRSlGgVS+hoFkdAqIIG43FUAHV9lChoBmgJaA9DCN7LfXJULXJAlIaUUpRoFU2ZAWgWR0CoghaxxDLKdX2UKGgGaAloD0MINnhflUsocECUhpRSlGgVS9hoFkdAqIIewxFiKHV9lChoBmgJaA9DCAOTG0UWqHJAlIaUUpRoFU1QAWgWR0Cogw1+Zw4sdX2UKGgGaAloD0MIV+vE5Thwc0CUhpRSlGgVTTMBaBZHQKiDEQr+YMR1fZQoaAZoCWgPQwjP9ugN96VzQJSGlFKUaBVL1WgWR0CogySWZ7XydX2UKGgGaAloD0MIesVTjzRucECUhpRSlGgVTScBaBZHQKiD/2bobGZ1fZQoaAZoCWgPQwgpe0s5n4dyQJSGlFKUaBVNQgFoFkdAqIQK33Hq/3V9lChoBmgJaA9DCLRXHw89M3FAlIaUUpRoFU0DAWgWR0CohFrPdEb6dX2UKGgGaAloD0MIvsEXJtO2cUCUhpRSlGgVTRkBaBZHQKiEdJRwZO11fZQoaAZoCWgPQwhqSx3ktS1yQJSGlFKUaBVL4mgWR0CohH9rwe/6dX2UKGgGaAloD0MIhnDMsid/c0CUhpRSlGgVS+doFkdAqISYMvysjnV9lChoBmgJaA9DCFjLnZngRHNAlIaUUpRoFU0TAWgWR0CohLuqFRHgdX2UKGgGaAloD0MIuoYZGg9MckCUhpRSlGgVTQQBaBZHQKiE0vWYnfF1fZQoaAZoCWgPQwh6/rRRnaByQJSGlFKUaBVL5WgWR0CohSiiAUcodX2UKGgGaAloD0MIDixHyMBacUCUhpRSlGgVS/doFkdAqIVZvBJqZnV9lChoBmgJaA9DCKEt51KcpnBAlIaUUpRoFUv2aBZHQKiFbg8bJfZ1fZQoaAZoCWgPQwi2SNqNPgVyQJSGlFKUaBVNdwFoFkdAqIXtFDv3J3V9lChoBmgJaA9DCEVI3c6+pWxAlIaUUpRoFUvuaBZHQKiGSfGuLaV1fZQoaAZoCWgPQwjABG7dzdRxQJSGlFKUaBVNSwFoFkdAqIZhpBX0XnV9lChoBmgJaA9DCO4ljdH6lnJAlIaUUpRoFU0PAWgWR0CohswtSQ5ndX2UKGgGaAloD0MIN8XjohpFcECUhpRSlGgVTU0BaBZHQKiHpGlQ/HJ1fZQoaAZoCWgPQwh7gy9MJlptQJSGlFKUaBVNDQFoFkdAqIesuHvc8HV9lChoBmgJaA9DCNm1vd1S0nNAlIaUUpRoFUvnaBZHQKiHu4c3l0Z1fZQoaAZoCWgPQwg25nXEYWFyQJSGlFKUaBVL9mgWR0Coh82OZLIxdX2UKGgGaAloD0MIq8yU1h8lcECUhpRSlGgVS+xoFkdAqIfvxjJ+2HV9lChoBmgJaA9DCFga+FFNlHJAlIaUUpRoFU0SAWgWR0CoiDtZeRgadX2UKGgGaAloD0MIVvSHZt4Bc0CUhpRSlGgVTQ0BaBZHQKiIgbZOBUd1fZQoaAZoCWgPQwiOlZhnJR1wQJSGlFKUaBVNSAFoFkdAqIjda0QbuXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 736,
80
+ "n_steps": 1024,
81
+ "gamma": 0.9999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ThirdLunarLander2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4bc930bb9e96b2022f310327505d9f54b20fc56ed76c3a9c07ac8e795fb6db
3
+ size 87929
ThirdLunarLander2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1760f54ec671bc9c383430c71b5e6561e73e1c643faf664c2f196e81076f2328
3
+ size 43393
ThirdLunarLander2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ThirdLunarLander2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 800768, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678709117341910092, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNGXz328GC6HUbtul5h0Td/xBG7NouIOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUI4CRMHRbUCUhpRSlIwBbJRL0IwBdJRHQKyqZ/OMVDd1fZQoaAZoCWgPQwjpDIy8LPZyQJSGlFKUaBVL2GgWR0Csqy+T3Zf2dX2UKGgGaAloD0MIk6espitKckCUhpRSlGgVS+FoFkdArKwARbr1NHV9lChoBmgJaA9DCDsA4q4eqXBAlIaUUpRoFUvRaBZHQKyswtwrDqJ1fZQoaAZoCWgPQwhw0jQoml1zQJSGlFKUaBVL6GgWR0CsraPYODradX2UKGgGaAloD0MIVRUaiOX3cUCUhpRSlGgVS8xoFkdArK558hLXc3V9lChoBmgJaA9DCGUXDK65GnBAlIaUUpRoFUvQaBZHQKyvXu1F6Rh1fZQoaAZoCWgPQwhOQX42coJxQJSGlFKUaBVL1mgWR0CssD7PY4ACdX2UKGgGaAloD0MIN+Dzw8imckCUhpRSlGgVS9VoFkdArLEbupjtonV9lChoBmgJaA9DCIIBhA8lVnFAlIaUUpRoFUvLaBZHQKy1z2ZiNKh1fZQoaAZoCWgPQwjuWkI+KMtyQJSGlFKUaBVL3GgWR0Cstm/Qa72+dX2UKGgGaAloD0MIngjiPFywcECUhpRSlGgVS+doFkdArLcQ5Jbt7nV9lChoBmgJaA9DCCpvRzjtfXJAlIaUUpRoFUvPaBZHQKy3osNlRP51fZQoaAZoCWgPQwinI4CbRWlzQJSGlFKUaBVL2GgWR0CsuD1zQu27dX2UKGgGaAloD0MILuV8sbeIcECUhpRSlGgVS+doFkdArLjb4+KTCHV9lChoBmgJaA9DCF5KXTKO23BAlIaUUpRoFUvgaBZHQKy5cG9pRGd1fZQoaAZoCWgPQwgwKT4+oflhQJSGlFKUaBVN6ANoFkdArMCQgRsdk3V9lChoBmgJaA9DCHu7JTmgWnFAlIaUUpRoFUvgaBZHQKzBJawD/2l1fZQoaAZoCWgPQwhxkBDli61xQJSGlFKUaBVL8GgWR0Cswcddmg8KdX2UKGgGaAloD0MIMe2b+6vUckCUhpRSlGgVS+9oFkdArMJpIg/1QXV9lChoBmgJaA9DCP8+48JBmnJAlIaUUpRoFUvNaBZHQKzC9fJmukl1fZQoaAZoCWgPQwjBcK5hRjdxQJSGlFKUaBVL32gWR0Csw5NaY/mldX2UKGgGaAloD0MI/YLdsO1GckCUhpRSlGgVS89oFkdArMQkophF3XV9lChoBmgJaA9DCCWyD7IsaHFAlIaUUpRoFUvNaBZHQKzEuDr7fpF1fZQoaAZoCWgPQwjP91PjJd1yQJSGlFKUaBVL52gWR0CsyOjyvs7ddX2UKGgGaAloD0MINpTai6ghckCUhpRSlGgVS81oFkdArMmibhFVk3V9lChoBmgJaA9DCLDJGvUQBXBAlIaUUpRoFUvUaBZHQKzKXftx+8Z1fZQoaAZoCWgPQwgHQNzVa5BxQJSGlFKUaBVLymgWR0Csyx5qmCRPdX2UKGgGaAloD0MIqwSLw1n5cECUhpRSlGgVS+toFkdArMwGHi3ocXV9lChoBmgJaA9DCEUtza3QbXJAlIaUUpRoFUvZaBZHQKzM6Ofdykt1fZQoaAZoCWgPQwgXKv9a3p5vQJSGlFKUaBVLxGgWR0CszanxaxHHdX2UKGgGaAloD0MIMc7fhMLncECUhpRSlGgVS95oFkdArM5+eFtbcHV9lChoBmgJaA9DCOmAJOybF3NAlIaUUpRoFUvraBZHQKzPcV/MGHJ1fZQoaAZoCWgPQwi+Zrls9BVvQJSGlFKUaBVL0GgWR0Cs08OlGgBcdX2UKGgGaAloD0MIEheARinTcUCUhpRSlGgVS8FoFkdArNRGzOX3QHV9lChoBmgJaA9DCLUy4Zf6tHBAlIaUUpRoFUvDaBZHQKzU0oDxLCh1fZQoaAZoCWgPQwg3UyEeSU1xQJSGlFKUaBVL2mgWR0Cs1Wqh11W9dX2UKGgGaAloD0MIj4zV5j/TckCUhpRSlGgVS9poFkdArNX+BjFyaXV9lChoBmgJaA9DCLrzxHN2KHNAlIaUUpRoFUveaBZHQKzWmTWXkYJ1fZQoaAZoCWgPQwhvfsNEA61vQJSGlFKUaBVLzWgWR0Cs1yhTwUg0dX2UKGgGaAloD0MIutdJfVkwcUCUhpRSlGgVS9doFkdArNe4UahpQHV9lChoBmgJaA9DCGsqi8Lut3BAlIaUUpRoFUvzaBZHQKzYYFjd56d1fZQoaAZoCWgPQwj1ona/SsRyQJSGlFKUaBVL02gWR0Cs2Pha1TisdX2UKGgGaAloD0MIzEBl/PsOcUCUhpRSlGgVS+JoFkdArNzKkfs/p3V9lChoBmgJaA9DCAZoW816/nBAlIaUUpRoFUvLaBZHQKzdVXf642F1fZQoaAZoCWgPQwjBj2rYbwFxQJSGlFKUaBVL3mgWR0Cs3etqHoHLdX2UKGgGaAloD0MI9BWkGYu3cUCUhpRSlGgVS/VoFkdArN6OW6bvw3V9lChoBmgJaA9DCAlP6PWnxHJAlIaUUpRoFUvPaBZHQKzfHLK3d9F1fZQoaAZoCWgPQwiR71LqkqhwQJSGlFKUaBVL3WgWR0Cs360hvBJqdX2UKGgGaAloD0MIWJI813cKc0CUhpRSlGgVS+JoFkdArOBRgJC0GHV9lChoBmgJaA9DCAvT9xrC03BAlIaUUpRoFUvgaBZHQKzg6vf0mMR1fZQoaAZoCWgPQwgDlIYaRZVwQJSGlFKUaBVL0mgWR0Cs4Xo0hvBKdX2UKGgGaAloD0MItWtCWiMqc0CUhpRSlGgVS9doFkdArOVNRDTjN3V9lChoBmgJaA9DCP2C3bDtoHNAlIaUUpRoFUvRaBZHQKzmFI+W4Vh1fZQoaAZoCWgPQwjcR25NeixwQJSGlFKUaBVLy2gWR0Cs5sLWZqmCdX2UKGgGaAloD0MIcXK/Q9HucECUhpRSlGgVS8toFkdArOeCrBCUo3V9lChoBmgJaA9DCMQFoFE6K3FAlIaUUpRoFUvEaBZHQKzoQqz7di51fZQoaAZoCWgPQwhtyhXeZXhuQJSGlFKUaBVL0WgWR0Cs6QHXVbzLdX2UKGgGaAloD0MI4zYawJvacECUhpRSlGgVS89oFkdArOnMYyfthXV9lChoBmgJaA9DCMFWCRaHMW9AlIaUUpRoFUvRaBZHQKzqnNet0V91fZQoaAZoCWgPQwiIZMixtVlxQJSGlFKUaBVL92gWR0Cs65+5nUUgdX2UKGgGaAloD0MIAwr19FHkc0CUhpRSlGgVS+poFkdArOyOE25xznV9lChoBmgJaA9DCFcJFoczYHFAlIaUUpRoFUvUaBZHQKzxHt8/lhh1fZQoaAZoCWgPQwgGEhQ/xvtfQJSGlFKUaBVN6ANoFkdArPUPGMn7YXV9lChoBmgJaA9DCCl64GNwlXJAlIaUUpRoFUvGaBZHQKz1lu89Oh11fZQoaAZoCWgPQwho6Qq2EeJlQJSGlFKUaBVN6ANoFkdArPwAvFm4AnV9lChoBmgJaA9DCJzFi4UhHXFAlIaUUpRoFUvYaBZHQKz8kM3qAz51fZQoaAZoCWgPQwjmdcQhm1hxQJSGlFKUaBVL1GgWR0Cs/RisfaHsdX2UKGgGaAloD0MIkj6toj/1cUCUhpRSlGgVS8JoFkdArP2YljVhC3V9lChoBmgJaA9DCE/JObHHzHNAlIaUUpRoFUvJaBZHQKz+JtEXtSh1fZQoaAZoCWgPQwj8witJXvpyQJSGlFKUaBVL4WgWR0Cs/r3l0YCRdX2UKGgGaAloD0MI8iiV8ERvc0CUhpRSlGgVS9ZoFkdArP9OkpI+XHV9lChoBmgJaA9DCIxoO6auqnBAlIaUUpRoFUvKaBZHQKz/26wMYuV1fZQoaAZoCWgPQwgJwD+lSuBtQJSGlFKUaBVLx2gWR0CtAFs052hadX2UKGgGaAloD0MI38X7cbv8ckCUhpRSlGgVS+5oFkdArQSkwtapxXV9lChoBmgJaA9DCAJlU64wqnBAlIaUUpRoFUvdaBZHQK0FaX40uUV1fZQoaAZoCWgPQwjTvySVKWBxQJSGlFKUaBVL12gWR0CtBjWepXIVdX2UKGgGaAloD0MIAkUsYhi3cUCUhpRSlGgVS85oFkdArQb3lCCz1XV9lChoBmgJaA9DCNSCF33FN3NAlIaUUpRoFUvMaBZHQK0HyTsY2sJ1fZQoaAZoCWgPQwgo84++STBuQJSGlFKUaBVL8WgWR0CtCMbJOnEVdX2UKGgGaAloD0MI8Uv9vOn1cECUhpRSlGgVS+xoFkdArQm3ViF0xXV9lChoBmgJaA9DCIgwfho3b3FAlIaUUpRoFUvSaBZHQK0KmMOwxFl1fZQoaAZoCWgPQwjJrrSMlCVzQJSGlFKUaBVLzWgWR0CtC4ByS3b3dX2UKGgGaAloD0MIO29js6PNcUCUhpRSlGgVS8xoFkdArQ/BlHz6J3V9lChoBmgJaA9DCBd+cD61A3BAlIaUUpRoFUvPaBZHQK0QUNDMNc51fZQoaAZoCWgPQwiyuWqeo5hvQJSGlFKUaBVLwGgWR0CtENH+ZPVNdX2UKGgGaAloD0MIUgslk1PAcUCUhpRSlGgVS+loFkdArRFy6reZX3V9lChoBmgJaA9DCN3PKcjPYW5AlIaUUpRoFUvNaBZHQK0SA8TSLIh1fZQoaAZoCWgPQwj1K50PD/pxQJSGlFKUaBVLxmgWR0CtEpPQWvbHdX2UKGgGaAloD0MIx9Rd2YXPcECUhpRSlGgVS9NoFkdArRMld5Y5k3V9lChoBmgJaA9DCG6l12bjl3FAlIaUUpRoFUvbaBZHQK0Tv2Jzkp91fZQoaAZoCWgPQwiHbCBdrPxwQJSGlFKUaBVL12gWR0CtFFEhA4XGdX2UKGgGaAloD0MIG2K85tU1cECUhpRSlGgVS9NoFkdArRTimbb1y3V9lChoBmgJaA9DCKgZUkUxs3BAlIaUUpRoFUveaBZHQK0YmmgrYoR1fZQoaAZoCWgPQwjqz36kCNlvQJSGlFKUaBVL32gWR0CtGStFBppOdX2UKGgGaAloD0MIOxqH+l1ncECUhpRSlGgVS9FoFkdArRm4Gr0aqHV9lChoBmgJaA9DCML6P4f58HFAlIaUUpRoFUvPaBZHQK0aUXIEKVp1fZQoaAZoCWgPQwjfbd44qcJxQJSGlFKUaBVL2GgWR0CtGufpD/lydX2UKGgGaAloD0MIP3EA/T4WcUCUhpRSlGgVS9hoFkdArRt6ttALRnV9lChoBmgJaA9DCEqbqnvkiXJAlIaUUpRoFUvaaBZHQK0cCpe/pMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5200, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678716297981303349, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMnuDvGZ4M/fUr5vO8aC7/p1wA+WqRYPAAAAAAAAAAA5okrvT1KbbvLcpg9EtFhviwQs7xfRZc+AACAPwAAAABG5iW+e5L0PlZyTz6J9qm+Wys8vTAsaz0AAAAAAAAAAAAwa7x73oi6oAMbOFpbEzOK4Ua6o500twAAgD8AAIA/w9aOvsjiFD+E3MI8fcHlvke/ub74IOM9AAAAAAAAAADGaCG+jyEkP8ozOD2hM+e+NFfUvZpQQT0AAAAAAAAAAJOBQb5zMRI/g9ZKPnV61L44ecS99t1fPgAAAAAAAAAAZtKavPbMRbodlt26GS2DtvZHljvKBgA6AACAPwAAgD8AD7K8JVQpPk60/z0q6YS+wOcrvcUodjsAAAAAAAAAAM0M/jzhcLa6E/epNvEBlzF0mpc3pAXGtQAAgD8AAIA/APPqvMMhaLqrB4w5d7ODsaikWrtUgKK4AACAPwAAgD+TF1Q+6od3PwgCxDx+sQC/YAbsPpJGfr0AAAAAAAAAAJopd7vcvEG8S+VhPB4TFD3v8cg9w4jrvQAAgD8AAIA/zfKVPGYyuj+8HJo+XemDPqgks7vhSgU7AAAAAAAAAABmnAc8ru+Bum2D1DZ6zPUx6JwROxMr+7UAAIA/AACAP7OfDT7ADys/sM1JvpAB475t/ZA9C/TOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh1EQPD6rckCUhpRSlIwBbJRL/YwBdJRHQKhjy71ZkkN1fZQoaAZoCWgPQwiIvOXqBwpxQJSGlFKUaBVNQgFoFkdAqGPJcJMQE3V9lChoBmgJaA9DCCUH7Gqym3NAlIaUUpRoFU0ZAWgWR0CoY++F+NLldX2UKGgGaAloD0MIc0nVdpPKcUCUhpRSlGgVS+5oFkdAqGQLcEeQuHV9lChoBmgJaA9DCGh3SDFAQXNAlIaUUpRoFU08AWgWR0CoZEblq8DkdX2UKGgGaAloD0MIi8QENXyNcUCUhpRSlGgVTRIBaBZHQKhkTmwqy4Z1fZQoaAZoCWgPQwiUMqmhDcBxQJSGlFKUaBVNKAFoFkdAqGS2a+evp3V9lChoBmgJaA9DCDvkZrgBg3NAlIaUUpRoFUvsaBZHQKhlZYr8R+V1fZQoaAZoCWgPQwixFTQtMcJyQJSGlFKUaBVNWQJoFkdAqGXeJN0vG3V9lChoBmgJaA9DCCkEcokjO3FAlIaUUpRoFU0sAWgWR0CoZoOvUz9CdX2UKGgGaAloD0MIVYmytxS8bUCUhpRSlGgVS9loFkdAqGaYD3dsSHV9lChoBmgJaA9DCI+K/zvilnFAlIaUUpRoFU2dAWgWR0CoZvgdn004dX2UKGgGaAloD0MII4eImxMHckCUhpRSlGgVS/doFkdAqGb1XzUZvXV9lChoBmgJaA9DCMqpnWFqA3JAlIaUUpRoFUv5aBZHQKhnHP2wmmd1fZQoaAZoCWgPQwh4J58eG+1wQJSGlFKUaBVL9GgWR0CoZzNCJGe+dX2UKGgGaAloD0MIbCHIQYmocECUhpRSlGgVTQsBaBZHQKhnTb0voNd1fZQoaAZoCWgPQwi3tvC81BVyQJSGlFKUaBVL/GgWR0CoZ3Gax5cDdX2UKGgGaAloD0MIF0Z6UTtjcUCUhpRSlGgVTYMBaBZHQKhnfW0Z3s51fZQoaAZoCWgPQwjooiHjkZVyQJSGlFKUaBVNKgFoFkdAqGhOryUcGXV9lChoBmgJaA9DCFtB0xJrW3BAlIaUUpRoFU1qAWgWR0CoaFKO938odX2UKGgGaAloD0MIk3NiDy0XckCUhpRSlGgVTR8BaBZHQKhoqYk3S8d1fZQoaAZoCWgPQwgmqOFb2DNvQJSGlFKUaBVNjAFoFkdAqGnKXpnpS3V9lChoBmgJaA9DCGQ+INCZgHFAlIaUUpRoFU0ZAWgWR0CoafGKZUkwdX2UKGgGaAloD0MIO1W+ZyRlcECUhpRSlGgVS+1oFkdAqGnxbD/EO3V9lChoBmgJaA9DCKg3o+arMHFAlIaUUpRoFUvKaBZHQKhp+8oQWep1fZQoaAZoCWgPQwjrdCDr6WBwQJSGlFKUaBVL4GgWR0CoaiYkNWludX2UKGgGaAloD0MIlkG1wQnsckCUhpRSlGgVTSsBaBZHQKhq8LCvX9R1fZQoaAZoCWgPQwiq7/yiBJByQJSGlFKUaBVNhQFoFkdAqGsFCkXUIHV9lChoBmgJaA9DCBhA+FAixnJAlIaUUpRoFUv/aBZHQKhrLtShrWR1fZQoaAZoCWgPQwh+HM2RlUtzQJSGlFKUaBVNLwJoFkdAqGtY4ACGOHV9lChoBmgJaA9DCPjB+dTxA3JAlIaUUpRoFUvfaBZHQKhrqhje9Bd1fZQoaAZoCWgPQwgA/5QqUdNxQJSGlFKUaBVNKAFoFkdAqGu9e2NNrXV9lChoBmgJaA9DCIVbPpISDHJAlIaUUpRoFU1QAWgWR0CobCW4mTkidX2UKGgGaAloD0MIVWe1wN7IcUCUhpRSlGgVTYkBaBZHQKhsqHmig011fZQoaAZoCWgPQwhClgUT/whyQJSGlFKUaBVNjQFoFkdAqGzqoybhFXV9lChoBmgJaA9DCPfoDfeRgXBAlIaUUpRoFU0jAWgWR0CobPmhufmLdX2UKGgGaAloD0MIQfD49u7OcUCUhpRSlGgVS+doFkdAqG0k8ifQKXV9lChoBmgJaA9DCKZIvhKI7XBAlIaUUpRoFUvtaBZHQKhtU2tMfzV1fZQoaAZoCWgPQwiPxTap6AFwQJSGlFKUaBVL+2gWR0CobYJvYODrdX2UKGgGaAloD0MIk+LjE3LQc0CUhpRSlGgVTYEBaBZHQKht0UY8+zN1fZQoaAZoCWgPQwihndMskD1zQJSGlFKUaBVNEAFoFkdAqG31GEwnIHV9lChoBmgJaA9DCDPhl/r5UHFAlIaUUpRoFUvYaBZHQKht+Lv1DjR1fZQoaAZoCWgPQwgOaVTgpG5yQJSGlFKUaBVNLgFoFkdAqG4sdgfEGnV9lChoBmgJaA9DCN+JWS/GbXFAlIaUUpRoFUv2aBZHQKhuQyeqaPV1fZQoaAZoCWgPQwi+T1WhwWByQJSGlFKUaBVL7mgWR0CoekiswL3LdX2UKGgGaAloD0MI2GK3z2qFcECUhpRSlGgVTTEBaBZHQKh7/UPQOWl1fZQoaAZoCWgPQwgXSiantjRyQJSGlFKUaBVL12gWR0CofD7gbZOBdX2UKGgGaAloD0MIjrETXgK+bkCUhpRSlGgVS/1oFkdAqHygJC0F83V9lChoBmgJaA9DCAqi7gNQqXNAlIaUUpRoFUvUaBZHQKh8pzjFQ2x1fZQoaAZoCWgPQwjOjlTfeQZxQJSGlFKUaBVNKgFoFkdAqH0EP+XJHXV9lChoBmgJaA9DCKncRC1NjnJAlIaUUpRoFU0AAWgWR0CofStYbKigdX2UKGgGaAloD0MITMecZ6yccECUhpRSlGgVTXgBaBZHQKh9NqKP4mF1fZQoaAZoCWgPQwgv3SQGwbBxQJSGlFKUaBVL2mgWR0CofVpBX0XhdX2UKGgGaAloD0MI7niT32KlcECUhpRSlGgVS/BoFkdAqH17KxLTQXV9lChoBmgJaA9DCLOxEvNsRXNAlIaUUpRoFU1FAWgWR0CofaRUedTYdX2UKGgGaAloD0MIxFxStd0CcECUhpRSlGgVTdoBaBZHQKh+E7Ciypt1fZQoaAZoCWgPQwg5DVGF/ylxQJSGlFKUaBVNAAFoFkdAqH562phnanV9lChoBmgJaA9DCHy5T47C63BAlIaUUpRoFU0xAWgWR0CofsrJbMX8dX2UKGgGaAloD0MIPpepSTB3c0CUhpRSlGgVTUoBaBZHQKh+3+2E0zl1fZQoaAZoCWgPQwgfDhKivOZxQJSGlFKUaBVNQAFoFkdAqH8ViYsunXV9lChoBmgJaA9DCP3YJD/if0NAlIaUUpRoFUu8aBZHQKh/icBltj11fZQoaAZoCWgPQwhUHXIz3JNwQJSGlFKUaBVL6GgWR0Cof96QvHtGdX2UKGgGaAloD0MIvaqzWuAqc0CUhpRSlGgVTSkBaBZHQKiAKGahHsl1fZQoaAZoCWgPQwhfKcsQBzxyQJSGlFKUaBVL+GgWR0CogIczQ/ordX2UKGgGaAloD0MI/WZiupAcc0CUhpRSlGgVS/poFkdAqIDEk+otMHV9lChoBmgJaA9DCGH8NO5NnHFAlIaUUpRoFUvzaBZHQKiA0I0qH451fZQoaAZoCWgPQwiZRpOLsWlyQJSGlFKUaBVNDwFoFkdAqIDxU1hsqXV9lChoBmgJaA9DCF4R/G8ldW1AlIaUUpRoFU1IAWgWR0CogUzgMtsfdX2UKGgGaAloD0MIs1w2Ouf1cECUhpRSlGgVTQ4BaBZHQKiBblbu+h51fZQoaAZoCWgPQwjZI9QMqZ1xQJSGlFKUaBVNjAJoFkdAqIF2St/4I3V9lChoBmgJaA9DCIwPs5dtH3FAlIaUUpRoFU0YAWgWR0CogfSV4X41dX2UKGgGaAloD0MI+3PRkPFUbkCUhpRSlGgVS+hoFkdAqIIG43FUAHV9lChoBmgJaA9DCN7LfXJULXJAlIaUUpRoFU2ZAWgWR0CoghaxxDLKdX2UKGgGaAloD0MINnhflUsocECUhpRSlGgVS9hoFkdAqIIewxFiKHV9lChoBmgJaA9DCAOTG0UWqHJAlIaUUpRoFU1QAWgWR0Cogw1+Zw4sdX2UKGgGaAloD0MIV+vE5Thwc0CUhpRSlGgVTTMBaBZHQKiDEQr+YMR1fZQoaAZoCWgPQwjP9ugN96VzQJSGlFKUaBVL1WgWR0CogySWZ7XydX2UKGgGaAloD0MIesVTjzRucECUhpRSlGgVTScBaBZHQKiD/2bobGZ1fZQoaAZoCWgPQwgpe0s5n4dyQJSGlFKUaBVNQgFoFkdAqIQK33Hq/3V9lChoBmgJaA9DCLRXHw89M3FAlIaUUpRoFU0DAWgWR0CohFrPdEb6dX2UKGgGaAloD0MIvsEXJtO2cUCUhpRSlGgVTRkBaBZHQKiEdJRwZO11fZQoaAZoCWgPQwhqSx3ktS1yQJSGlFKUaBVL4mgWR0CohH9rwe/6dX2UKGgGaAloD0MIhnDMsid/c0CUhpRSlGgVS+doFkdAqISYMvysjnV9lChoBmgJaA9DCFjLnZngRHNAlIaUUpRoFU0TAWgWR0CohLuqFRHgdX2UKGgGaAloD0MIuoYZGg9MckCUhpRSlGgVTQQBaBZHQKiE0vWYnfF1fZQoaAZoCWgPQwh6/rRRnaByQJSGlFKUaBVL5WgWR0CohSiiAUcodX2UKGgGaAloD0MIDixHyMBacUCUhpRSlGgVS/doFkdAqIVZvBJqZnV9lChoBmgJaA9DCKEt51KcpnBAlIaUUpRoFUv2aBZHQKiFbg8bJfZ1fZQoaAZoCWgPQwi2SNqNPgVyQJSGlFKUaBVNdwFoFkdAqIXtFDv3J3V9lChoBmgJaA9DCEVI3c6+pWxAlIaUUpRoFUvuaBZHQKiGSfGuLaV1fZQoaAZoCWgPQwjABG7dzdRxQJSGlFKUaBVNSwFoFkdAqIZhpBX0XnV9lChoBmgJaA9DCO4ljdH6lnJAlIaUUpRoFU0PAWgWR0CohswtSQ5ndX2UKGgGaAloD0MIN8XjohpFcECUhpRSlGgVTU0BaBZHQKiHpGlQ/HJ1fZQoaAZoCWgPQwh7gy9MJlptQJSGlFKUaBVNDQFoFkdAqIesuHvc8HV9lChoBmgJaA9DCNm1vd1S0nNAlIaUUpRoFUvnaBZHQKiHu4c3l0Z1fZQoaAZoCWgPQwg25nXEYWFyQJSGlFKUaBVL9mgWR0Coh82OZLIxdX2UKGgGaAloD0MIq8yU1h8lcECUhpRSlGgVS+xoFkdAqIfvxjJ+2HV9lChoBmgJaA9DCFga+FFNlHJAlIaUUpRoFU0SAWgWR0CoiDtZeRgadX2UKGgGaAloD0MIVvSHZt4Bc0CUhpRSlGgVTQ0BaBZHQKiIgbZOBUd1fZQoaAZoCWgPQwiOlZhnJR1wQJSGlFKUaBVNSAFoFkdAqIjda0QbuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 278.2515796498815, "std_reward": 16.017312283963378, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T12:44:40.970935"}
 
1
+ {"mean_reward": 276.5444558738027, "std_reward": 21.790573968504205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T14:28:58.285134"}