yumingyi commited on
Commit
2f7c946
·
1 Parent(s): 02bbc80

Updated PPO LunarLander

Browse files
LunarLander2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2cec577f5ee9e82f192459e8f202844c51a1acc706ca73ef31a61a63c3cf6e8
3
+ size 146811
LunarLander2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunarLander2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 200704,
47
+ "_total_timesteps": 200000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678708308690170397,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADN9eb0crJQ/u8OBvl286r6MjQa9ImMlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0035199999999999676,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIar5KPrZKckCUhpRSlIwBbJRNAgGMAXSUR0CWIWCCBf8edX2UKGgGaAloD0MIN1K2SNq6cUCUhpRSlGgVTQYBaBZHQJYjhU3n6mB1fZQoaAZoCWgPQwhHk4sxMFJwQJSGlFKUaBVNBQFoFkdAliWdc8kleHV9lChoBmgJaA9DCFZHjnSGvGBAlIaUUpRoFU3oA2gWR0CWLoo2XLNfdX2UKGgGaAloD0MIoPmcu11RcUCUhpRSlGgVTQsBaBZHQJYwJO6/Zdx1fZQoaAZoCWgPQwh5rBkZZPRxQJSGlFKUaBVL8mgWR0CWN9hNM496dX2UKGgGaAloD0MIghq+hXXTcUCUhpRSlGgVTScBaBZHQJY5d24d6s11fZQoaAZoCWgPQwg+JlKaTUByQJSGlFKUaBVL7WgWR0CWOr2lEZzgdX2UKGgGaAloD0MIB9Fa0aYucECUhpRSlGgVS+RoFkdAljwNi2DxsnV9lChoBmgJaA9DCAg7xaoBGnFAlIaUUpRoFU0EAWgWR0CWPX8EFGG3dX2UKGgGaAloD0MIXknyXJ+UcECUhpRSlGgVS/1oFkdAlj8CrDIiknV9lChoBmgJaA9DCHWRQlk4sHBAlIaUUpRoFUvhaBZHQJZATjS5RTF1fZQoaAZoCWgPQwjXS1MEOFxyQJSGlFKUaBVL6mgWR0CWQYq8lHBldX2UKGgGaAloD0MIb7n6sYnhcUCUhpRSlGgVTQABaBZHQJZJJLIxQBR1fZQoaAZoCWgPQwjx1vm3SzhvQJSGlFKUaBVL5WgWR0CWSmYNiH6/dX2UKGgGaAloD0MIFhbcD/gJbkCUhpRSlGgVS+JoFkdAlku3qu8sc3V9lChoBmgJaA9DCIYA4NgzJG9AlIaUUpRoFUv8aBZHQJZNFj4Hoox1fZQoaAZoCWgPQwh+VwT/22dwQJSGlFKUaBVL8mgWR0CWTnBt1p0wdX2UKGgGaAloD0MIEK6AQr2Mb0CUhpRSlGgVS+xoFkdAlk/OB6KLsXV9lChoBmgJaA9DCEUTKGJRfHJAlIaUUpRoFU0HAWgWR0CWUUtrbg0kdX2UKGgGaAloD0MIfLlPjgJ8cUCUhpRSlGgVTQABaBZHQJZTMWac7Qt1fZQoaAZoCWgPQwj4+e/BK19wQJSGlFKUaBVL8GgWR0CWXd+jua4MdX2UKGgGaAloD0MIaHdIMQAQcECUhpRSlGgVS+1oFkdAll/azqrzXnV9lChoBmgJaA9DCJFI2/jTBnNAlIaUUpRoFU0rAWgWR0CWYkWMju8cdX2UKGgGaAloD0MI6rMDrms0cUCUhpRSlGgVS/RoFkdAlmQ48U21lXV9lChoBmgJaA9DCAt+G2K8dXBAlIaUUpRoFUvoaBZHQJZlgx46fap1fZQoaAZoCWgPQwgShCugUP1uQJSGlFKUaBVL92gWR0CWZu/o7muDdX2UKGgGaAloD0MIHsTOFLryckCUhpRSlGgVS/BoFkdAlmhDDO1OTXV9lChoBmgJaA9DCMrfvaPGsm9AlIaUUpRoFUviaBZHQJZpcYLsrup1fZQoaAZoCWgPQwiLGHYYk8RvQJSGlFKUaBVL22gWR0CWapgTRIBjdX2UKGgGaAloD0MIKGA7GHFockCUhpRSlGgVTRUBaBZHQJZyoVFhG6R1fZQoaAZoCWgPQwgepn1zf+5tQJSGlFKUaBVL6WgWR0CWc+f4h2W6dX2UKGgGaAloD0MIyEJ0CFzIcECUhpRSlGgVS/poFkdAlnU+NT987nV9lChoBmgJaA9DCNvAHahTfXBAlIaUUpRoFU0mAWgWR0CWdubEgntwdX2UKGgGaAloD0MIAWn/A2wCcUCUhpRSlGgVTQQBaBZHQJZ4YTGo73h1fZQoaAZoCWgPQwgY7lwY6VhzQJSGlFKUaBVNAQFoFkdAlnnXAVO9FnV9lChoBmgJaA9DCBuFJLN6EW9AlIaUUpRoFUvsaBZHQJZ7Hy9VWCF1fZQoaAZoCWgPQwgSvvc3qBJzQJSGlFKUaBVL9GgWR0CWfGyVv/BFdX2UKGgGaAloD0MIilWDMDe1cUCUhpRSlGgVS+poFkdAloQMAFPi1nV9lChoBmgJaA9DCFpLAWk/snJAlIaUUpRoFUvzaBZHQJaFcKb8WKx1fZQoaAZoCWgPQwio/6z58W1uQJSGlFKUaBVL72gWR0CWhszlcQiBdX2UKGgGaAloD0MIn1inyrd8ckCUhpRSlGgVTSEBaBZHQJaIbNA1Nxl1fZQoaAZoCWgPQwjKUBVT6ZFxQJSGlFKUaBVNEQFoFkdAlon8QiA2AHV9lChoBmgJaA9DCOc24V4ZTHFAlIaUUpRoFU0vAWgWR0CWi6DrJKaodX2UKGgGaAloD0MI+oBAZ1KlcUCUhpRSlGgVS+1oFkdAlo1J1ie/YnV9lChoBmgJaA9DCNYe9kKBWXNAlIaUUpRoFUv7aBZHQJaPLechC+l1fZQoaAZoCWgPQwioqzsWW0xwQJSGlFKUaBVNAQFoFkdAlpnybx3FDXV9lChoBmgJaA9DCJ1Hxf/dUnJAlIaUUpRoFU0LAWgWR0CWnBazeGfxdX2UKGgGaAloD0MIvlDAdrBnbUCUhpRSlGgVS+VoFkdAlp3tVR1ox3V9lChoBmgJaA9DCJS8OseADnNAlIaUUpRoFUvtaBZHQJafXQjUuth1fZQoaAZoCWgPQwicTUcAt5RyQJSGlFKUaBVL8mgWR0CWoKjurp7kdX2UKGgGaAloD0MIEeULWki4cECUhpRSlGgVTbkBaBZHQJajUy9EkSp1fZQoaAZoCWgPQwjxEMZPY9hyQJSGlFKUaBVL/2gWR0CWpLP3i704dX2UKGgGaAloD0MIukxNgndLcECUhpRSlGgVS+RoFkdAlqx4kZ75VXV9lChoBmgJaA9DCGx3D9B9h3JAlIaUUpRoFU0NAWgWR0CWre606YE4dX2UKGgGaAloD0MIFk7S/LHPZUCUhpRSlGgVTegDaBZHQJa0o8U21lZ1fZQoaAZoCWgPQwjqsMItX25xQJSGlFKUaBVL6mgWR0CWtept78ekdX2UKGgGaAloD0MIxmzJqojucECUhpRSlGgVS+1oFkdAlrcqxPfsNXV9lChoBmgJaA9DCIOmJVZGhHFAlIaUUpRoFUvkaBZHQJa4X6BRQ791fZQoaAZoCWgPQwjmkT8Y+E9xQJSGlFKUaBVNDQFoFkdAlsAPRNRFZ3V9lChoBmgJaA9DCAPOUrJcUnBAlIaUUpRoFUv4aBZHQJbBaFRHf/F1fZQoaAZoCWgPQwiOIJViBxxxQJSGlFKUaBVL/mgWR0CWwtyquKXOdX2UKGgGaAloD0MIsFWCxWG+ckCUhpRSlGgVS/ZoFkdAlsQ+yzHCGnV9lChoBmgJaA9DCK9bBMZ6N3FAlIaUUpRoFUvqaBZHQJbFgtthuwZ1fZQoaAZoCWgPQwhmS1ZFuL9uQJSGlFKUaBVL+mgWR0CWxy3Zf2K3dX2UKGgGaAloD0MIm49rQwWEckCUhpRSlGgVS+VoFkdAlsjW4I8hcXV9lChoBmgJaA9DCItR19o7uHJAlIaUUpRoFUvvaBZHQJbKg7dSEUV1fZQoaAZoCWgPQwjgDtQpjy9zQJSGlFKUaBVL+GgWR0CW1WRoysS1dX2UKGgGaAloD0MICDwwgPBpckCUhpRSlGgVS/NoFkdAltdnBUJfIHV9lChoBmgJaA9DCGeY2lKH13JAlIaUUpRoFUv1aBZHQJbZGkFfReF1fZQoaAZoCWgPQwi7YHDN3RxyQJSGlFKUaBVNDAFoFkdAltqGL9/BnHV9lChoBmgJaA9DCDI4Sl6dxnFAlIaUUpRoFU0HAWgWR0CW3AyGSIP9dX2UKGgGaAloD0MIesVTj7RQcECUhpRSlGgVS/JoFkdAlt1gTM7lrHV9lChoBmgJaA9DCFFn7iFhpWRAlIaUUpRoFU3oA2gWR0CW65AYHgP3dX2UKGgGaAloD0MIuKzCZgDYcUCUhpRSlGgVTQ0BaBZHQJbtCJ40Mw11fZQoaAZoCWgPQwhPIVfqGYxxQJSGlFKUaBVL+mgWR0CW7loAGSpzdX2UKGgGaAloD0MIQ6ooXqVUcUCUhpRSlGgVTQYBaBZHQJbvwxIre691fZQoaAZoCWgPQwh+cD51rIduQJSGlFKUaBVL3mgWR0CW8OjQiRnwdX2UKGgGaAloD0MI9buwNZvLckCUhpRSlGgVTTQBaBZHQJbyq0CzTnd1fZQoaAZoCWgPQwhoBBvXf61yQJSGlFKUaBVNAQFoFkdAlvQbm+0w8HV9lChoBmgJaA9DCNYdi22SA3FAlIaUUpRoFUv2aBZHQJb7q9alk6N1fZQoaAZoCWgPQwi0HOihdvtyQJSGlFKUaBVNJgFoFkdAlv1I9X9zfnV9lChoBmgJaA9DCGdIFcVrEHFAlIaUUpRoFUvfaBZHQJb+go9cKPZ1fZQoaAZoCWgPQwhIFcWrLJpvQJSGlFKUaBVL62gWR0CW/9rLhaTwdX2UKGgGaAloD0MIgV8jSdAMc0CUhpRSlGgVS/hoFkdAlwF9UOuq3nV9lChoBmgJaA9DCOCcEaW9k29AlIaUUpRoFUvlaBZHQJcDHMhX8wZ1fZQoaAZoCWgPQwiZZyWt+OJwQJSGlFKUaBVL5mgWR0CXBOAxzq8ldX2UKGgGaAloD0MIOxvyzwzHcUCUhpRSlGgVTRIBaBZHQJcG2E12q1h1fZQoaAZoCWgPQwjjioujsoRyQJSGlFKUaBVNBAFoFkdAlxImrGR3eXV9lChoBmgJaA9DCGuDE9GvDFhAlIaUUpRoFU3oA2gWR0CXGts/IKc/dX2UKGgGaAloD0MI3eukvmykcECUhpRSlGgVS+FoFkdAlxwWNvOyFHV9lChoBmgJaA9DCCFAho7d+3JAlIaUUpRoFUv+aBZHQJcdgTRIBil1fZQoaAZoCWgPQwiQSUbOwnpuQJSGlFKUaBVL42gWR0CXHsLWZqmCdX2UKGgGaAloD0MIo8haQ6kLcECUhpRSlGgVS+ZoFkdAlyAE4m1IAnV9lChoBmgJaA9DCEnW4eiqm3JAlIaUUpRoFUv1aBZHQJcn158jRlZ1fZQoaAZoCWgPQwhlbVM8LkRuQJSGlFKUaBVL6mgWR0CXKTE5hjOLdX2UKGgGaAloD0MIHxSUolV6cECUhpRSlGgVS/JoFkdAlyqRrrPdEnV9lChoBmgJaA9DCDc5fNIJKHFAlIaUUpRoFUv3aBZHQJcr9d3Sro51fZQoaAZoCWgPQwiGj4gpUU5xQJSGlFKUaBVNSANoFkdAlzI0kjX4CnV9lChoBmgJaA9DCHS2gND6m25AlIaUUpRoFUv5aBZHQJczj++/QBx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1290,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunarLander2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16ba9605f96c4d7bb8799e0300fc981c3431c28152658cf8745a55bdc208ac7e
3
+ size 88057
LunarLander2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7125f5b8de9b12272b9257acd039627f2a5176a09c848c84b434dc82ef58c079
3
+ size 43393
LunarLander2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 241.98 +/- 71.01
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.83 +/- 15.29
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678704066037992460, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMbPPY9RVcECUhpRSlIwBbJRNGQGMAXSUR0CaeNvfj0cwdX2UKGgGaAloD0MI3gGetPCXbECUhpRSlGgVTQ8BaBZHQJp5gS+QEIR1fZQoaAZoCWgPQwj67laWaIxtQJSGlFKUaBVNBgFoFkdAmnqcHGCI13V9lChoBmgJaA9DCEC9GTXfkG9AlIaUUpRoFU0oAWgWR0CafJMuez2OdX2UKGgGaAloD0MIat5xis52cECUhpRSlGgVTVgBaBZHQJp+WbExZdR1fZQoaAZoCWgPQwi0d0Zb1ZBwQJSGlFKUaBVNBgFoFkdAmoOC3XqZ+nV9lChoBmgJaA9DCHIycatgdnBAlIaUUpRoFU0GAWgWR0Ca7FYBvJiidX2UKGgGaAloD0MIfGRz1TxYbkCUhpRSlGgVTT4BaBZHQJrsvTQVsUJ1fZQoaAZoCWgPQwhivVErTLlxQJSGlFKUaBVNGgFoFkdAmu3Vme18cHV9lChoBmgJaA9DCJ0q3zMSEm5AlIaUUpRoFU0cAWgWR0Ca7s5eqrBCdX2UKGgGaAloD0MIZD+LpUiHa0CUhpRSlGgVTUQBaBZHQJrvkiaAnUl1fZQoaAZoCWgPQwg6z9iX7CxvQJSGlFKUaBVNKgFoFkdAmvEOTzND+nV9lChoBmgJaA9DCE+vlGWIWypAlIaUUpRoFUveaBZHQJry8fPomol1fZQoaAZoCWgPQwgUJSGRNhNjQJSGlFKUaBVN6ANoFkdAmvQA9aEBbXV9lChoBmgJaA9DCAbYR6eus3BAlIaUUpRoFU06AWgWR0Ca9FitJWeZdX2UKGgGaAloD0MIXMe44uKQJkCUhpRSlGgVS9doFkdAmvfSYCyQgnV9lChoBmgJaA9DCEaXN4frKWRAlIaUUpRoFU3oA2gWR0Ca+iTvRZ2ZdX2UKGgGaAloD0MIxEFClG9bcECUhpRSlGgVTQIBaBZHQJr6/MUypJh1fZQoaAZoCWgPQwhgkPRplQRvQJSGlFKUaBVNDAFoFkdAmvurQ5WBBnV9lChoBmgJaA9DCI178xsmD3BAlIaUUpRoFU0WAWgWR0Ca/NW5Yoy9dX2UKGgGaAloD0MIqDej5qtdb0CUhpRSlGgVTQcBaBZHQJr9Pfek56t1fZQoaAZoCWgPQwiJJ7uZEdtxQJSGlFKUaBVNFwFoFkdAmv1ySvC/GnV9lChoBmgJaA9DCP0wQnh0LHBAlIaUUpRoFU0gAWgWR0Ca/z0x/NJOdX2UKGgGaAloD0MI/YUeMXrbb0CUhpRSlGgVTQQBaBZHQJsAJeNT9891fZQoaAZoCWgPQwicielC7NVwQJSGlFKUaBVNXQNoFkdAmwBjAaef7XV9lChoBmgJaA9DCO2b+6sHt3BAlIaUUpRoFU0gAWgWR0CbAP9K28ZldX2UKGgGaAloD0MIN+Dzwwg6VkCUhpRSlGgVTegDaBZHQJsG5S/CZWt1fZQoaAZoCWgPQwiDFDyFnJ9wQJSGlFKUaBVNNAFoFkdAmwcL61stTXV9lChoBmgJaA9DCPFiYYicOG5AlIaUUpRoFU0jAWgWR0CbBzGYa5wwdX2UKGgGaAloD0MIlfQwtLpJbECUhpRSlGgVTQkBaBZHQJsH93JPqLV1fZQoaAZoCWgPQwg10HzOXa1sQJSGlFKUaBVNCwFoFkdAmwiEUCaJAXV9lChoBmgJaA9DCJ8cBYjCWnBAlIaUUpRoFU0RAWgWR0CbCwddmg8KdX2UKGgGaAloD0MIIXh8e5cackCUhpRSlGgVTQgBaBZHQJsLn2M85jp1fZQoaAZoCWgPQwh1PjxLEGNxQJSGlFKUaBVNKQJoFkdAmwv7t3OfNHV9lChoBmgJaA9DCIMVp1qLSXFAlIaUUpRoFU0QAWgWR0CbDEBX0XgtdX2UKGgGaAloD0MITMRb5x8lcECUhpRSlGgVTTEBaBZHQJsOPF3pwCN1fZQoaAZoCWgPQwj+KVWibKNgQJSGlFKUaBVN6ANoFkdAmxBnj2i+L3V9lChoBmgJaA9DCGh6ibFMrGBAlIaUUpRoFU3oA2gWR0CbEXTspobodX2UKGgGaAloD0MIMe2b+6vIb0CUhpRSlGgVTQQBaBZHQJsSQZpBX0Z1fZQoaAZoCWgPQwhagSGrW5lvQJSGlFKUaBVNFwFoFkdAmxLpvxYq5XV9lChoBmgJaA9DCG9+w0RD6HBAlIaUUpRoFU0lAWgWR0CbE74x1xKhdX2UKGgGaAloD0MI5zki3yWmYECUhpRSlGgVTegDaBZHQJsT7EXLvCx1fZQoaAZoCWgPQwh3K0t0FrRtQJSGlFKUaBVNGwFoFkdAmxQLfUF0P3V9lChoBmgJaA9DCOiC+pa59W9AlIaUUpRoFU0IAWgWR0CbFeWT5ftydX2UKGgGaAloD0MInWNA9jqEcECUhpRSlGgVTUYBaBZHQJsWKdK/VRV1fZQoaAZoCWgPQwiIuaRq+yxxQJSGlFKUaBVNEgFoFkdAmxa/8uSOinV9lChoBmgJaA9DCDJxqyCG3W5AlIaUUpRoFU0LAWgWR0CbFskQPI4mdX2UKGgGaAloD0MIFM5uLVMbcECUhpRSlGgVTSABaBZHQJsXtO8Cgbp1fZQoaAZoCWgPQwinA1lPLYZvQJSGlFKUaBVNHAFoFkdAmxlHhjvuxHV9lChoBmgJaA9DCOChKNCnDXJAlIaUUpRoFU3AAmgWR0CbGi+5vtMPdX2UKGgGaAloD0MIfV2G/zRFcECUhpRSlGgVTQkBaBZHQJsaXivPkaN1fZQoaAZoCWgPQwiWehaEcotuQJSGlFKUaBVNGwFoFkdAmxwA/9pAU3V9lChoBmgJaA9DCEF9y5wu0WxAlIaUUpRoFU0cAWgWR0CbHNV+Zw4sdX2UKGgGaAloD0MIbSBdbNpSaECUhpRSlGgVTTADaBZHQJsc1fD1oQF1fZQoaAZoCWgPQwjABkSIK5luQJSGlFKUaBVNHAFoFkdAmx1k+HJtBXV9lChoBmgJaA9DCPq5oSm7bG9AlIaUUpRoFU0HAWgWR0CbHX5SFXaKdX2UKGgGaAloD0MIX/BpTp7FcUCUhpRSlGgVTQ0BaBZHQJsdkKKHfuV1fZQoaAZoCWgPQwjwTj49NuVxQJSGlFKUaBVNDQFoFkdAmx3EBKcurnV9lChoBmgJaA9DCN9rCI7Lm29AlIaUUpRoFU0QAWgWR0CbH53XZoPDdX2UKGgGaAloD0MIoaF/gguRYUCUhpRSlGgVTegDaBZHQJsf4DvE0i11fZQoaAZoCWgPQwgGf7+YreNuQJSGlFKUaBVNBwFoFkdAmx/tUKiPAHV9lChoBmgJaA9DCC+kw0OYmG9AlIaUUpRoFU07AWgWR0CbIRqREF4cdX2UKGgGaAloD0MINQpJZnUtb0CUhpRSlGgVTRwBaBZHQJskFKujh1l1fZQoaAZoCWgPQwh1ApoIGwVxQJSGlFKUaBVNEwFoFkdAmyUQlWwNb3V9lChoBmgJaA9DCGo0uRgDXm9AlIaUUpRoFU0SAWgWR0CbJUbKRuCPdX2UKGgGaAloD0MIRIfAkcBtbUCUhpRSlGgVTWgBaBZHQJsltyyUs4F1fZQoaAZoCWgPQwgtmPijKBdwQJSGlFKUaBVL/2gWR0CbJ33mV7hOdX2UKGgGaAloD0MIhllo5zQ7cUCUhpRSlGgVTQQBaBZHQJsnuzY287J1fZQoaAZoCWgPQwitNCkFnb5xQJSGlFKUaBVL+GgWR0CbKBUIcBEKdX2UKGgGaAloD0MIVHO5wVC/cECUhpRSlGgVS/doFkdAmyggmu1WsHV9lChoBmgJaA9DCISgo1WtaHFAlIaUUpRoFU09AWgWR0CbKUPmPo3adX2UKGgGaAloD0MIGk0uxsB9bkCUhpRSlGgVTR8BaBZHQJsqG1twaR91fZQoaAZoCWgPQwguPC8Vm1lwQJSGlFKUaBVNMQFoFkdAmypg+QlrunV9lChoBmgJaA9DCFGlZg+0+nBAlIaUUpRoFU0KAWgWR0CbK6MtsenydX2UKGgGaAloD0MIeEfGajOScECUhpRSlGgVTRMBaBZHQJssRnpSrHV1fZQoaAZoCWgPQwhkA+lik05wQJSGlFKUaBVL/mgWR0CbLKG2kSEldX2UKGgGaAloD0MIOey+Y/hqcUCUhpRSlGgVTTMBaBZHQJstl+8XenB1fZQoaAZoCWgPQwj6Jk2DYmNwQJSGlFKUaBVNAwFoFkdAmy+xp5/smnV9lChoBmgJaA9DCGiWBKipf25AlIaUUpRoFU0JAWgWR0CbMYzySV4YdX2UKGgGaAloD0MIHyxjQzeTbkCUhpRSlGgVTRIBaBZHQJsxjv0AcT91fZQoaAZoCWgPQwhanDHMSS9wQJSGlFKUaBVNJwFoFkdAmzJfOt4iYHV9lChoBmgJaA9DCA3GiEShaXBAlIaUUpRoFU0gAWgWR0CbNM9FF2FGdX2UKGgGaAloD0MIBrggW5ZDcUCUhpRSlGgVS/FoFkdAmzTQIt16mnV9lChoBmgJaA9DCJIIjWAj4nBAlIaUUpRoFU04AWgWR0CbNSrZ8KG+dX2UKGgGaAloD0MIgsr491mmcECUhpRSlGgVTRcBaBZHQJs1aW2PT5R1fZQoaAZoCWgPQwjUfJV8bAVxQJSGlFKUaBVNGgFoFkdAmzZVOKwY+HV9lChoBmgJaA9DCC/f+rDeTW5AlIaUUpRoFUv+aBZHQJs26ZDzAet1fZQoaAZoCWgPQwga+bziqfhtQJSGlFKUaBVNGgFoFkdAmzguQdS2pnV9lChoBmgJaA9DCDrpfeMrz3FAlIaUUpRoFU3HAWgWR0CbOlGc4HX3dX2UKGgGaAloD0MIEFt6NNU1bkCUhpRSlGgVTQUBaBZHQJs7fb/Ot4l1fZQoaAZoCWgPQwgsms5OxjtxQJSGlFKUaBVNAAFoFkdAmzv7Z39rGnV9lChoBmgJaA9DCNZvJqZLDHBAlIaUUpRoFU1CAWgWR0CbPHSFoL5RdX2UKGgGaAloD0MI2NZP/9mmbUCUhpRSlGgVS/1oFkdAmz4mK2rn1XV9lChoBmgJaA9DCFcHQNzVuG5AlIaUUpRoFUv4aBZHQJs+Y9ovi991fZQoaAZoCWgPQwipaoKoe8tgQJSGlFKUaBVN6ANoFkdAmz7/IGQjlnV9lChoBmgJaA9DCL4yb9U1HHBAlIaUUpRoFU0bAWgWR0CbP0X/YJ3QdX2UKGgGaAloD0MInl2+9WHdcECUhpRSlGgVS/ZoFkdAmz+jm4iHI3V9lChoBmgJaA9DCJRqn45Ht21AlIaUUpRoFU0tAWgWR0CbQJ19v0iAdX2UKGgGaAloD0MInKVkOck0cUCUhpRSlGgVS/JoFkdAm0F85CF9KHV9lChoBmgJaA9DCP5g4Ln3HnFAlIaUUpRoFU0nAWgWR0CbQhI3R5TqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678708308690170397, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADN9eb0crJQ/u8OBvl286r6MjQa9ImMlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIar5KPrZKckCUhpRSlIwBbJRNAgGMAXSUR0CWIWCCBf8edX2UKGgGaAloD0MIN1K2SNq6cUCUhpRSlGgVTQYBaBZHQJYjhU3n6mB1fZQoaAZoCWgPQwhHk4sxMFJwQJSGlFKUaBVNBQFoFkdAliWdc8kleHV9lChoBmgJaA9DCFZHjnSGvGBAlIaUUpRoFU3oA2gWR0CWLoo2XLNfdX2UKGgGaAloD0MIoPmcu11RcUCUhpRSlGgVTQsBaBZHQJYwJO6/Zdx1fZQoaAZoCWgPQwh5rBkZZPRxQJSGlFKUaBVL8mgWR0CWN9hNM496dX2UKGgGaAloD0MIghq+hXXTcUCUhpRSlGgVTScBaBZHQJY5d24d6s11fZQoaAZoCWgPQwg+JlKaTUByQJSGlFKUaBVL7WgWR0CWOr2lEZzgdX2UKGgGaAloD0MIB9Fa0aYucECUhpRSlGgVS+RoFkdAljwNi2DxsnV9lChoBmgJaA9DCAg7xaoBGnFAlIaUUpRoFU0EAWgWR0CWPX8EFGG3dX2UKGgGaAloD0MIXknyXJ+UcECUhpRSlGgVS/1oFkdAlj8CrDIiknV9lChoBmgJaA9DCHWRQlk4sHBAlIaUUpRoFUvhaBZHQJZATjS5RTF1fZQoaAZoCWgPQwjXS1MEOFxyQJSGlFKUaBVL6mgWR0CWQYq8lHBldX2UKGgGaAloD0MIb7n6sYnhcUCUhpRSlGgVTQABaBZHQJZJJLIxQBR1fZQoaAZoCWgPQwjx1vm3SzhvQJSGlFKUaBVL5WgWR0CWSmYNiH6/dX2UKGgGaAloD0MIFhbcD/gJbkCUhpRSlGgVS+JoFkdAlku3qu8sc3V9lChoBmgJaA9DCIYA4NgzJG9AlIaUUpRoFUv8aBZHQJZNFj4Hoox1fZQoaAZoCWgPQwh+VwT/22dwQJSGlFKUaBVL8mgWR0CWTnBt1p0wdX2UKGgGaAloD0MIEK6AQr2Mb0CUhpRSlGgVS+xoFkdAlk/OB6KLsXV9lChoBmgJaA9DCEUTKGJRfHJAlIaUUpRoFU0HAWgWR0CWUUtrbg0kdX2UKGgGaAloD0MIfLlPjgJ8cUCUhpRSlGgVTQABaBZHQJZTMWac7Qt1fZQoaAZoCWgPQwj4+e/BK19wQJSGlFKUaBVL8GgWR0CWXd+jua4MdX2UKGgGaAloD0MIaHdIMQAQcECUhpRSlGgVS+1oFkdAll/azqrzXnV9lChoBmgJaA9DCJFI2/jTBnNAlIaUUpRoFU0rAWgWR0CWYkWMju8cdX2UKGgGaAloD0MI6rMDrms0cUCUhpRSlGgVS/RoFkdAlmQ48U21lXV9lChoBmgJaA9DCAt+G2K8dXBAlIaUUpRoFUvoaBZHQJZlgx46fap1fZQoaAZoCWgPQwgShCugUP1uQJSGlFKUaBVL92gWR0CWZu/o7muDdX2UKGgGaAloD0MIHsTOFLryckCUhpRSlGgVS/BoFkdAlmhDDO1OTXV9lChoBmgJaA9DCMrfvaPGsm9AlIaUUpRoFUviaBZHQJZpcYLsrup1fZQoaAZoCWgPQwiLGHYYk8RvQJSGlFKUaBVL22gWR0CWapgTRIBjdX2UKGgGaAloD0MIKGA7GHFockCUhpRSlGgVTRUBaBZHQJZyoVFhG6R1fZQoaAZoCWgPQwgepn1zf+5tQJSGlFKUaBVL6WgWR0CWc+f4h2W6dX2UKGgGaAloD0MIyEJ0CFzIcECUhpRSlGgVS/poFkdAlnU+NT987nV9lChoBmgJaA9DCNvAHahTfXBAlIaUUpRoFU0mAWgWR0CWdubEgntwdX2UKGgGaAloD0MIAWn/A2wCcUCUhpRSlGgVTQQBaBZHQJZ4YTGo73h1fZQoaAZoCWgPQwgY7lwY6VhzQJSGlFKUaBVNAQFoFkdAlnnXAVO9FnV9lChoBmgJaA9DCBuFJLN6EW9AlIaUUpRoFUvsaBZHQJZ7Hy9VWCF1fZQoaAZoCWgPQwgSvvc3qBJzQJSGlFKUaBVL9GgWR0CWfGyVv/BFdX2UKGgGaAloD0MIilWDMDe1cUCUhpRSlGgVS+poFkdAloQMAFPi1nV9lChoBmgJaA9DCFpLAWk/snJAlIaUUpRoFUvzaBZHQJaFcKb8WKx1fZQoaAZoCWgPQwio/6z58W1uQJSGlFKUaBVL72gWR0CWhszlcQiBdX2UKGgGaAloD0MIn1inyrd8ckCUhpRSlGgVTSEBaBZHQJaIbNA1Nxl1fZQoaAZoCWgPQwjKUBVT6ZFxQJSGlFKUaBVNEQFoFkdAlon8QiA2AHV9lChoBmgJaA9DCOc24V4ZTHFAlIaUUpRoFU0vAWgWR0CWi6DrJKaodX2UKGgGaAloD0MI+oBAZ1KlcUCUhpRSlGgVS+1oFkdAlo1J1ie/YnV9lChoBmgJaA9DCNYe9kKBWXNAlIaUUpRoFUv7aBZHQJaPLechC+l1fZQoaAZoCWgPQwioqzsWW0xwQJSGlFKUaBVNAQFoFkdAlpnybx3FDXV9lChoBmgJaA9DCJ1Hxf/dUnJAlIaUUpRoFU0LAWgWR0CWnBazeGfxdX2UKGgGaAloD0MIvlDAdrBnbUCUhpRSlGgVS+VoFkdAlp3tVR1ox3V9lChoBmgJaA9DCJS8OseADnNAlIaUUpRoFUvtaBZHQJafXQjUuth1fZQoaAZoCWgPQwicTUcAt5RyQJSGlFKUaBVL8mgWR0CWoKjurp7kdX2UKGgGaAloD0MIEeULWki4cECUhpRSlGgVTbkBaBZHQJajUy9EkSp1fZQoaAZoCWgPQwjxEMZPY9hyQJSGlFKUaBVL/2gWR0CWpLP3i704dX2UKGgGaAloD0MIukxNgndLcECUhpRSlGgVS+RoFkdAlqx4kZ75VXV9lChoBmgJaA9DCGx3D9B9h3JAlIaUUpRoFU0NAWgWR0CWre606YE4dX2UKGgGaAloD0MIFk7S/LHPZUCUhpRSlGgVTegDaBZHQJa0o8U21lZ1fZQoaAZoCWgPQwjqsMItX25xQJSGlFKUaBVL6mgWR0CWtept78ekdX2UKGgGaAloD0MIxmzJqojucECUhpRSlGgVS+1oFkdAlrcqxPfsNXV9lChoBmgJaA9DCIOmJVZGhHFAlIaUUpRoFUvkaBZHQJa4X6BRQ791fZQoaAZoCWgPQwjmkT8Y+E9xQJSGlFKUaBVNDQFoFkdAlsAPRNRFZ3V9lChoBmgJaA9DCAPOUrJcUnBAlIaUUpRoFUv4aBZHQJbBaFRHf/F1fZQoaAZoCWgPQwiOIJViBxxxQJSGlFKUaBVL/mgWR0CWwtyquKXOdX2UKGgGaAloD0MIsFWCxWG+ckCUhpRSlGgVS/ZoFkdAlsQ+yzHCGnV9lChoBmgJaA9DCK9bBMZ6N3FAlIaUUpRoFUvqaBZHQJbFgtthuwZ1fZQoaAZoCWgPQwhmS1ZFuL9uQJSGlFKUaBVL+mgWR0CWxy3Zf2K3dX2UKGgGaAloD0MIm49rQwWEckCUhpRSlGgVS+VoFkdAlsjW4I8hcXV9lChoBmgJaA9DCItR19o7uHJAlIaUUpRoFUvvaBZHQJbKg7dSEUV1fZQoaAZoCWgPQwjgDtQpjy9zQJSGlFKUaBVL+GgWR0CW1WRoysS1dX2UKGgGaAloD0MICDwwgPBpckCUhpRSlGgVS/NoFkdAltdnBUJfIHV9lChoBmgJaA9DCGeY2lKH13JAlIaUUpRoFUv1aBZHQJbZGkFfReF1fZQoaAZoCWgPQwi7YHDN3RxyQJSGlFKUaBVNDAFoFkdAltqGL9/BnHV9lChoBmgJaA9DCDI4Sl6dxnFAlIaUUpRoFU0HAWgWR0CW3AyGSIP9dX2UKGgGaAloD0MIesVTj7RQcECUhpRSlGgVS/JoFkdAlt1gTM7lrHV9lChoBmgJaA9DCFFn7iFhpWRAlIaUUpRoFU3oA2gWR0CW65AYHgP3dX2UKGgGaAloD0MIuKzCZgDYcUCUhpRSlGgVTQ0BaBZHQJbtCJ40Mw11fZQoaAZoCWgPQwhPIVfqGYxxQJSGlFKUaBVL+mgWR0CW7loAGSpzdX2UKGgGaAloD0MIQ6ooXqVUcUCUhpRSlGgVTQYBaBZHQJbvwxIre691fZQoaAZoCWgPQwh+cD51rIduQJSGlFKUaBVL3mgWR0CW8OjQiRnwdX2UKGgGaAloD0MI9buwNZvLckCUhpRSlGgVTTQBaBZHQJbyq0CzTnd1fZQoaAZoCWgPQwhoBBvXf61yQJSGlFKUaBVNAQFoFkdAlvQbm+0w8HV9lChoBmgJaA9DCNYdi22SA3FAlIaUUpRoFUv2aBZHQJb7q9alk6N1fZQoaAZoCWgPQwi0HOihdvtyQJSGlFKUaBVNJgFoFkdAlv1I9X9zfnV9lChoBmgJaA9DCGdIFcVrEHFAlIaUUpRoFUvfaBZHQJb+go9cKPZ1fZQoaAZoCWgPQwhIFcWrLJpvQJSGlFKUaBVL62gWR0CW/9rLhaTwdX2UKGgGaAloD0MIgV8jSdAMc0CUhpRSlGgVS/hoFkdAlwF9UOuq3nV9lChoBmgJaA9DCOCcEaW9k29AlIaUUpRoFUvlaBZHQJcDHMhX8wZ1fZQoaAZoCWgPQwiZZyWt+OJwQJSGlFKUaBVL5mgWR0CXBOAxzq8ldX2UKGgGaAloD0MIOxvyzwzHcUCUhpRSlGgVTRIBaBZHQJcG2E12q1h1fZQoaAZoCWgPQwjjioujsoRyQJSGlFKUaBVNBAFoFkdAlxImrGR3eXV9lChoBmgJaA9DCGuDE9GvDFhAlIaUUpRoFU3oA2gWR0CXGts/IKc/dX2UKGgGaAloD0MI3eukvmykcECUhpRSlGgVS+FoFkdAlxwWNvOyFHV9lChoBmgJaA9DCCFAho7d+3JAlIaUUpRoFUv+aBZHQJcdgTRIBil1fZQoaAZoCWgPQwiQSUbOwnpuQJSGlFKUaBVL42gWR0CXHsLWZqmCdX2UKGgGaAloD0MIo8haQ6kLcECUhpRSlGgVS+ZoFkdAlyAE4m1IAnV9lChoBmgJaA9DCEnW4eiqm3JAlIaUUpRoFUv1aBZHQJcn158jRlZ1fZQoaAZoCWgPQwhlbVM8LkRuQJSGlFKUaBVL6mgWR0CXKTE5hjOLdX2UKGgGaAloD0MIHxSUolV6cECUhpRSlGgVS/JoFkdAlyqRrrPdEnV9lChoBmgJaA9DCDc5fNIJKHFAlIaUUpRoFUv3aBZHQJcr9d3Sro51fZQoaAZoCWgPQwiGj4gpUU5xQJSGlFKUaBVNSANoFkdAlzI0kjX4CnV9lChoBmgJaA9DCHS2gND6m25AlIaUUpRoFUv5aBZHQJczj++/QBx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1290, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 241.98019848722248, "std_reward": 71.01311164460533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T11:48:56.323519"}
 
1
+ {"mean_reward": 274.8262890721263, "std_reward": 15.290832835682606, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T12:01:38.757784"}