yuri-no commited on
Commit
e5e2942
·
verified ·
1 Parent(s): b325ed9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -52,8 +52,8 @@ def get_detailed_instruct(task_description: str, query: str) -> str:
52
  return f'{task_description}\nQuery: {query}'
53
 
54
 
55
- model = AutoModel.from_pretrained('yuri-no/gemma-argos', torch_dtype=torch.bfloat16).to('cuda')
56
- tokenizer = AutoTokenizer.from_pretrained('yuri-no/gemma-argos')
57
 
58
  # Each query must come with a one-sentence instruction that describes the task
59
  task = 'Given a search query, retrieve relevant passages that answer the query'
@@ -80,7 +80,7 @@ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_ma
80
  embeddings = F.normalize(embeddings, p=2, dim=1)
81
  scores = (embeddings[:2] @ embeddings[2:].T) * 100
82
  print(scores.tolist())
83
- # [[69.5, 30.5, 26.0],
84
- # [32.25, 66.5, 30.25]]
85
  ```
86
  ---
 
52
  return f'{task_description}\nQuery: {query}'
53
 
54
 
55
+ model = AutoModel.from_pretrained('yuri-no/gemma-palm', torch_dtype=torch.bfloat16).to('cuda')
56
+ tokenizer = AutoTokenizer.from_pretrained('yuri-no/gemma-palm')
57
 
58
  # Each query must come with a one-sentence instruction that describes the task
59
  task = 'Given a search query, retrieve relevant passages that answer the query'
 
80
  embeddings = F.normalize(embeddings, p=2, dim=1)
81
  scores = (embeddings[:2] @ embeddings[2:].T) * 100
82
  print(scores.tolist())
83
+ # [[60.5, 16.375, 17.5],
84
+ # [26.0, 58.25, 15.0625]]
85
  ```
86
  ---