Adapters
Turkish
File size: 4,922 Bytes
5d73fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import tensorflow as tf
import model
from dataset import get_dataset, preprocess_sentence


class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, d_model: int, warmup_steps: int = 4000):
        super(CustomSchedule, self).__init__()
        self.d_model = tf.cast(d_model, dtype=tf.float32)
        self.warmup_steps = warmup_steps

    def __call__(self, step):
        arg1 = tf.math.rsqrt(step)
        arg2 = step * self.warmup_steps**-1.5
        return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
    
    
def inference(hparams, chatbot, tokenizer, sentence):
    sentence = preprocess_sentence(sentence)

    sentence = tf.expand_dims(
        hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
    )

    output = tf.expand_dims(hparams.start_token, 0)

    for _ in range(hparams.max_length):
        predictions = chatbot(inputs=[sentence, output], training=False)

        predictions = predictions[:, -1:, :]
        predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)

        if tf.equal(predicted_id, hparams.end_token[0]):
            break

        output = tf.concat([output, predicted_id], axis=-1)

    return tf.squeeze(output, axis=0)




def predict(hparams, chatbot, tokenizer, sentence):
    prediction = inference(hparams, chatbot, tokenizer, sentence)
    predicted_sentence = tokenizer.decode(
        [i for i in prediction if i < tokenizer.vocab_size]
    )
    return predicted_sentence


def evaluate(hparams, chatbot, tokenizer):
    print("\nDeğerlendir")
    sentence = "Merhaba nasılsın?"
    output = predict(hparams, chatbot, tokenizer, sentence)
    print(f"input: {sentence}\noutput: {output}")

    sentence = "Sence de gökyüzü çok güzel değil mi?"
    output = predict(hparams, chatbot, tokenizer, sentence)
    print(f"\ninput: {sentence}\noutput: {output}")

    sentence = "Sanırım uzaklara gideceğim."
    for _ in range(5):
        output = predict(hparams, chatbot, tokenizer, sentence)
        print(f"\ninput: {sentence}\noutput: {output}")
        sentence = output
    
    
def main(hparams):
    tf.keras.utils.set_random_seed(1234)

    data, token = get_dataset(hparams)

    chatbot = model.transformer(hparams)

    optimizer = tf.keras.optimizers.Adam(
        CustomSchedule(d_model=hparams.d_model), beta_1=0.9, beta_2=0.98, epsilon=1e-9
    )

    cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction="none"
    )

    def loss_function(y_true, y_pred):
        y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
        loss = cross_entropy(y_true, y_pred)
        mask = tf.cast(tf.not_equal(y_true, 0), dtype=tf.float32)
        loss = tf.multiply(loss, mask)
        return tf.reduce_mean(loss)

    def accuracy(y_true, y_pred):
        y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
        return tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)

    chatbot.compile(optimizer, loss=loss_function, metrics=[accuracy])

    chatbot.fit(data, epochs=hparams.epochs)

    print(f"\nmodel {hparams.save_model}'a kaydediliyor...")
    tf.keras.models.save_model(
        chatbot, filepath=hparams.save_model, include_optimizer=False
    )

    print(
        f"\nclear TensorFlow backend session and load model f rom {hparams.save_model}..."
    )
    del chatbot
    tf.keras.backend.clear_session()
    chatbot = tf.keras.models.load_model(
        hparams.save_model,
        custom_objects={
            "PositionalEncoding": model.PositionalEncoding,
            "MultiHeadAttention": model.MultiHeadAttention,
        },
        compile=False,
    )
    evaluate(hparams, chatbot, token)

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--save_model", default="model.h5", type=str, help="path save the model"
    )
    parser.add_argument(
        "--max_samples",
        default=25000,
        type=int,
        help="maximum number of conversation pairs to use",
    )
    parser.add_argument(
        "--max_length", default=40, type=int, help="maximum sentence length"
    )
    parser.add_argument("--batch_size", default=128, type=int)
    parser.add_argument("--num_layers", default=2, type=int)
    parser.add_argument("--num_units", default=512, type=int)
    parser.add_argument("--d_model", default=512, type=int)
    parser.add_argument("--num_heads", default=8, type=int)
    parser.add_argument("--dropout", default=0.1, type=float)
    parser.add_argument("--activation", default="relu", type=str)
    parser.add_argument("--epochs", default=70, type=int)
    
    main(parser.parse_args())