a2c-PandaReachDense-v2 / config.json
yuval6967's picture
Initial commit
ccbc7f3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f86730f4dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f86730f8a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685024793028603591, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7CvdPqA4jbuULhM/7CvdPqA4jbuULhM/7CvdPqA4jbuULhM/7CvdPqA4jbuULhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABC5fPwYoT79B8Ss/1OoZP+Bssz8c4Lq+6MpEPpvklL/N3Mu/1ID4vgYHuj899qK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADsK90+oDiNu5QuEz9icJY9KjoYu09qbD3sK90+oDiNu5QuEz9icJY9KjoYu09qbD3sK90+oDiNu5QuEz9icJY9KjoYu09qbD3sK90+oDiNu5QuEz9icJY9KjoYu09qbD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43197572 -0.00430973 0.5749295 ]\n [ 0.43197572 -0.00430973 0.5749295 ]\n [ 0.43197572 -0.00430973 0.5749295 ]\n [ 0.43197572 -0.00430973 0.5749295 ]]", "desired_goal": "[[ 0.8717959 -0.80920446 0.67165 ]\n [ 0.60123944 1.4017601 -0.36499107]\n [ 0.19218028 -1.1632265 -1.5926758 ]\n [-0.48535788 1.4533393 -0.3182849 ]]", "observation": "[[ 0.43197572 -0.00430973 0.5749295 0.07345654 -0.0023228 0.05771857]\n [ 0.43197572 -0.00430973 0.5749295 0.07345654 -0.0023228 0.05771857]\n [ 0.43197572 -0.00430973 0.5749295 0.07345654 -0.0023228 0.05771857]\n [ 0.43197572 -0.00430973 0.5749295 0.07345654 -0.0023228 0.05771857]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoFQbPWFdFz6F9d08K+FyvVjGrjwt11o+8XDGPRLJt72DcY4+SP+BvaCbIb0uqI8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0379225 0.14781715 0.02709461]\n [-0.05929677 0.02133481 0.21371146]\n [ 0.09689511 -0.08973898 0.27820978]\n [-0.06347519 -0.03945506 0.28057998]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwy6KHvgY4L+UhpRSlIwBbJRLMowBdJRHQKZE/xUedTZ1fZQoaAZoCWgPQwik5NU5BuTov5SGlFKUaBVLMmgWR0CmRMIn0CiidX2UKGgGaAloD0MIdXPxtz1B7L+UhpRSlGgVSzJoFkdApkSH6wdKd3V9lChoBmgJaA9DCH9N1qiHaOG/lIaUUpRoFUsyaBZHQKZES4BFNL11fZQoaAZoCWgPQwjdfCO6Z13ev5SGlFKUaBVLMmgWR0CmRqdAX2ugdX2UKGgGaAloD0MIWJI81/dh47+UhpRSlGgVSzJoFkdApkZqzkZJkHV9lChoBmgJaA9DCHdOs0C7Q+K/lIaUUpRoFUsyaBZHQKZGMJIDoyN1fZQoaAZoCWgPQwhrf2d79Ibdv5SGlFKUaBVLMmgWR0CmRfSMLncMdX2UKGgGaAloD0MItTNMbamD87+UhpRSlGgVSzJoFkdApkhZtpEhJXV9lChoBmgJaA9DCKVneomxTNy/lIaUUpRoFUsyaBZHQKZIHY6GQCF1fZQoaAZoCWgPQwjJjo1AvK7iv5SGlFKUaBVLMmgWR0CmR+N83MpxdX2UKGgGaAloD0MICqGDLuHQ9L+UhpRSlGgVSzJoFkdApkenEIgNgHV9lChoBmgJaA9DCHgJTn0gefO/lIaUUpRoFUsyaBZHQKZKEekHlfZ1fZQoaAZoCWgPQwgSwTi4dEzhv5SGlFKUaBVLMmgWR0CmSdV5jYqYdX2UKGgGaAloD0MICK7yBMLO5b+UhpRSlGgVSzJoFkdApkmbWqcVg3V9lChoBmgJaA9DCBu9GqA0VOK/lIaUUpRoFUsyaBZHQKZJXxBmf5F1fZQoaAZoCWgPQwgPuK6YER7wv5SGlFKUaBVLMmgWR0CmS9MHB1s+dX2UKGgGaAloD0MIU+dR8X9H3r+UhpRSlGgVSzJoFkdApkuV+XqqwXV9lChoBmgJaA9DCItx/iYUouS/lIaUUpRoFUsyaBZHQKZLW2YOUdJ1fZQoaAZoCWgPQwgrS3SWWQTnv5SGlFKUaBVLMmgWR0CmSx7E5yU+dX2UKGgGaAloD0MIFJhO6zao7L+UhpRSlGgVSzJoFkdApk2Uyi22HHV9lChoBmgJaA9DCNXnaiv2l+2/lIaUUpRoFUsyaBZHQKZNWG+K0lZ1fZQoaAZoCWgPQwhrf2d79Abjv5SGlFKUaBVLMmgWR0CmTR5gw482dX2UKGgGaAloD0MIza0QVmMJ6b+UhpRSlGgVSzJoFkdApkzi1AqusHV9lChoBmgJaA9DCJOLMbCOY+y/lIaUUpRoFUsyaBZHQKZO1g6U7jl1fZQoaAZoCWgPQwibxvZa0Hvnv5SGlFKUaBVLMmgWR0CmTpiSA6MjdX2UKGgGaAloD0MIXDrmPGNf4L+UhpRSlGgVSzJoFkdApk5dar3j/HV9lChoBmgJaA9DCKA4gH7fv+C/lIaUUpRoFUsyaBZHQKZOIFhXr+p1fZQoaAZoCWgPQwjkDwaeew/rv5SGlFKUaBVLMmgWR0CmT9Rk/bCadX2UKGgGaAloD0MIjliLTwEw0L+UhpRSlGgVSzJoFkdApk+W5MDfWXV9lChoBmgJaA9DCJFCWfj62uK/lIaUUpRoFUsyaBZHQKZPW6jFhod1fZQoaAZoCWgPQwjMtWgB2tbpv5SGlFKUaBVLMmgWR0CmTx56dDpkdX2UKGgGaAloD0MIfqfJjLcV7L+UhpRSlGgVSzJoFkdAplDNObiIcnV9lChoBmgJaA9DCOJyvALRk+m/lIaUUpRoFUsyaBZHQKZQj8NQTEl1fZQoaAZoCWgPQwgCuFm8WBjmv5SGlFKUaBVLMmgWR0CmUFSV4X41dX2UKGgGaAloD0MIWrqCbcQT7L+UhpRSlGgVSzJoFkdAplAXugHu7nV9lChoBmgJaA9DCJDdBUoKrPS/lIaUUpRoFUsyaBZHQKZR2PRzBAR1fZQoaAZoCWgPQwgLQ+T09Xziv5SGlFKUaBVLMmgWR0CmUZuoHcDbdX2UKGgGaAloD0MIV1wclZuo47+UhpRSlGgVSzJoFkdAplFgpe/pMnV9lChoBmgJaA9DCLYUkPY/QOe/lIaUUpRoFUsyaBZHQKZRI7QLNOd1fZQoaAZoCWgPQwhWfhmMEYnWv5SGlFKUaBVLMmgWR0CmUtOF6AvtdX2UKGgGaAloD0MIBOj3/ZsX6r+UhpRSlGgVSzJoFkdAplKWDBdld3V9lChoBmgJaA9DCObmG9E9a++/lIaUUpRoFUsyaBZHQKZSWveP7vZ1fZQoaAZoCWgPQwiPw2D+Cpnbv5SGlFKUaBVLMmgWR0CmUh36ZYxMdX2UKGgGaAloD0MIX+tSI/Rz9b+UhpRSlGgVSzJoFkdAplPd+RYA83V9lChoBmgJaA9DCNDWwcHexOe/lIaUUpRoFUsyaBZHQKZToKJEYwZ1fZQoaAZoCWgPQwjQQ20bRsHjv5SGlFKUaBVLMmgWR0CmU2XMY/FBdX2UKGgGaAloD0MI0Xr4MlGE5L+UhpRSlGgVSzJoFkdAplMo+EAYHnV9lChoBmgJaA9DCPYM4ZhlT+W/lIaUUpRoFUsyaBZHQKZU5L8rI5p1fZQoaAZoCWgPQwgyIeaSqu3nv5SGlFKUaBVLMmgWR0CmVKddVvMsdX2UKGgGaAloD0MIUd1c/G1P5r+UhpRSlGgVSzJoFkdAplRsL0BfbHV9lChoBmgJaA9DCFQCYhIu5O+/lIaUUpRoFUsyaBZHQKZULvm5lOJ1fZQoaAZoCWgPQwi7mGa618niv5SGlFKUaBVLMmgWR0CmVeUqpcX4dX2UKGgGaAloD0MI/+kGCryT6r+UhpRSlGgVSzJoFkdAplWnv2GqP3V9lChoBmgJaA9DCPWdX5Sgv+y/lIaUUpRoFUsyaBZHQKZVbL4etCB1fZQoaAZoCWgPQwj0b5f9ulPgv5SGlFKUaBVLMmgWR0CmVS+98JD3dX2UKGgGaAloD0MIwFyLFqBt5L+UhpRSlGgVSzJoFkdAplbb2USqVHV9lChoBmgJaA9DCAxWnGotzNa/lIaUUpRoFUsyaBZHQKZWnm/336B1fZQoaAZoCWgPQwgUBI9v7xriv5SGlFKUaBVLMmgWR0CmVmOAiFCcdX2UKGgGaAloD0MIrHMMyF7v47+UhpRSlGgVSzJoFkdAplYmZRbbDnV9lChoBmgJaA9DCOknnN1apue/lIaUUpRoFUsyaBZHQKZXzmkFfRh1fZQoaAZoCWgPQwgvo1huabXtv5SGlFKUaBVLMmgWR0CmV5DzqbBodX2UKGgGaAloD0MIePF+3H555b+UhpRSlGgVSzJoFkdApldV34bjtHV9lChoBmgJaA9DCOo+AKlNnNi/lIaUUpRoFUsyaBZHQKZXGLCvX9R1fZQoaAZoCWgPQwgWhzO/moPwv5SGlFKUaBVLMmgWR0CmWMkM1CPZdX2UKGgGaAloD0MIz77yID1F5b+UhpRSlGgVSzJoFkdApliLmCAc1nV9lChoBmgJaA9DCN2x2CYVjeO/lIaUUpRoFUsyaBZHQKZYUFr2xpt1fZQoaAZoCWgPQwj7y+7Jw0Lev5SGlFKUaBVLMmgWR0CmWBNVJcxCdX2UKGgGaAloD0MIzxH5LqWu7r+UhpRSlGgVSzJoFkdAplnEHWz4UXV9lChoBmgJaA9DCN1Dwvf+Btq/lIaUUpRoFUsyaBZHQKZZhqrR0EJ1fZQoaAZoCWgPQwgFa5xNR4Drv5SGlFKUaBVLMmgWR0CmWUujASFodX2UKGgGaAloD0MIiWAcXDrm4b+UhpRSlGgVSzJoFkdAplkOpIczZnV9lChoBmgJaA9DCMkAUMWNW9K/lIaUUpRoFUsyaBZHQKZav/FzdUN1fZQoaAZoCWgPQwjCNXf0v9zmv5SGlFKUaBVLMmgWR0CmWoKMNtqIdX2UKGgGaAloD0MIyy4YXHNH47+UhpRSlGgVSzJoFkdAplpHZf2K23V9lChoBmgJaA9DCFT9SufD8/C/lIaUUpRoFUsyaBZHQKZaCmLtNSJ1fZQoaAZoCWgPQwiYiLfOv13lv5SGlFKUaBVLMmgWR0CmW7gVoHs1dX2UKGgGaAloD0MIGHsvvmiP7L+UhpRSlGgVSzJoFkdAplt6liz9j3V9lChoBmgJaA9DCOxnsRTJV+u/lIaUUpRoFUsyaBZHQKZbP6ab4Jx1fZQoaAZoCWgPQwiuR+F6FK7Yv5SGlFKUaBVLMmgWR0CmWwK8L8aXdX2UKGgGaAloD0MIj1IJT+h147+UhpRSlGgVSzJoFkdAply+ZPVNH3V9lChoBmgJaA9DCLoUV5V91/O/lIaUUpRoFUsyaBZHQKZcgOlwcYJ1fZQoaAZoCWgPQwjJHMu76oHkv5SGlFKUaBVLMmgWR0CmXEWq1gIAdX2UKGgGaAloD0MInxwFiIIZ4r+UhpRSlGgVSzJoFkdAplwIpDu0C3V9lChoBmgJaA9DCKyowTQMn+K/lIaUUpRoFUsyaBZHQKZdtNB4Uvh1fZQoaAZoCWgPQwiU2/Y96i/0v5SGlFKUaBVLMmgWR0CmXXc8TzundX2UKGgGaAloD0MIZjIcz2fA+7+UhpRSlGgVSzJoFkdApl08Mw1zhnV9lChoBmgJaA9DCGnlXmBW6Pm/lIaUUpRoFUsyaBZHQKZc/0+1Sfl1fZQoaAZoCWgPQwjpt68D54zzv5SGlFKUaBVLMmgWR0CmXrRCQcPwdX2UKGgGaAloD0MIIeaSqu0m27+UhpRSlGgVSzJoFkdApl52zlcQiHV9lChoBmgJaA9DCApmTMEa5/G/lIaUUpRoFUsyaBZHQKZeO8oQWep1fZQoaAZoCWgPQwiHNgAbECHcv5SGlFKUaBVLMmgWR0CmXf6/ATIvdX2UKGgGaAloD0MIxy5RvTUw5b+UhpRSlGgVSzJoFkdApl/MQPI4l3V9lChoBmgJaA9DCHSy1Hq/0e2/lIaUUpRoFUsyaBZHQKZfjtoBaLZ1fZQoaAZoCWgPQwiZ8iGoGr3dv5SGlFKUaBVLMmgWR0CmX1PMr3CbdX2UKGgGaAloD0MIbmx2pPrO0L+UhpRSlGgVSzJoFkdApl8WwHJLd3V9lChoBmgJaA9DCA1v1uB9Ffm/lIaUUpRoFUsyaBZHQKZgyvHtF8Z1fZQoaAZoCWgPQwjVzjC1pQ7sv5SGlFKUaBVLMmgWR0CmYI2CEpRXdX2UKGgGaAloD0MIgJ2bNuO067+UhpRSlGgVSzJoFkdApmBSS7oStnV9lChoBmgJaA9DCNMwfERMid+/lIaUUpRoFUsyaBZHQKZgFQfIS151ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}