File size: 1,403 Bytes
4dfc2c9
81d15fe
4dfc2c9
 
81d15fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dfc2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
language: en
tags:
- summarization
model-index:
- name: yuvraj/summarizer-cnndm
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: sepidmnorozy/Urdu_sentiment
      type: sepidmnorozy/Urdu_sentiment
      config: sepidmnorozy--Urdu_sentiment
      split: train
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 0.0
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 0.0
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 0.0
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 0.0
      verified: true
    - name: loss
      type: loss
      value: 10.730116844177246
      verified: true
    - name: gen_len
      type: gen_len
      value: 19.9912
      verified: true
---
​
# Summarization
​
## Model description
​
BartForConditionalGeneration model fine tuned for summarization on 10000 samples from the cnn-dailymail dataset
​
## How to use
​
PyTorch model available
​
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
​
tokenizer = AutoTokenizer.from_pretrained("yuvraj/summarizer-cnndm") 
AutoModelWithLMHead.from_pretrained("yuvraj/summarizer-cnndm")
​
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)
summarizer("<Text to be summarized>")
​
## Limitations and bias
Trained on a small dataset