File size: 1,403 Bytes
4dfc2c9 81d15fe 4dfc2c9 81d15fe 4dfc2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
language: en
tags:
- summarization
model-index:
- name: yuvraj/summarizer-cnndm
results:
- task:
type: summarization
name: Summarization
dataset:
name: sepidmnorozy/Urdu_sentiment
type: sepidmnorozy/Urdu_sentiment
config: sepidmnorozy--Urdu_sentiment
split: train
metrics:
- name: ROUGE-1
type: rouge
value: 0.0
verified: true
- name: ROUGE-2
type: rouge
value: 0.0
verified: true
- name: ROUGE-L
type: rouge
value: 0.0
verified: true
- name: ROUGE-LSUM
type: rouge
value: 0.0
verified: true
- name: loss
type: loss
value: 10.730116844177246
verified: true
- name: gen_len
type: gen_len
value: 19.9912
verified: true
---
β
# Summarization
β
## Model description
β
BartForConditionalGeneration model fine tuned for summarization on 10000 samples from the cnn-dailymail dataset
β
## How to use
β
PyTorch model available
β
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
β
tokenizer = AutoTokenizer.from_pretrained("yuvraj/summarizer-cnndm")
AutoModelWithLMHead.from_pretrained("yuvraj/summarizer-cnndm")
β
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)
summarizer("<Text to be summarized>")
β
## Limitations and bias
Trained on a small dataset
|