segvol / model_segvol_single.py
yuxin
add model
44c38ef
raw
history blame
76.3 kB
from transformers import PreTrainedModel
from config_segvol import SegVolConfig
import numpy as np
import monai.transforms as transforms
class SegVolModel(PreTrainedModel):
config_class = SegVolConfig
def __init__(self, config):
super().__init__(config)
sam_model = _build_sam(
image_encoder_type='vit',
embed_dim = 768,
patch_size=self.config.patch_size,
checkpoint=None,
image_size=self.config.spatial_size,
)
self.model = SegVol(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder,
roi_size=self.config.spatial_size,
patch_size=self.config.patch_size,
test_mode=self.config.test_mode,
)
self.processor = SegVolProcessor(spatial_size=self.config.spatial_size)
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
return self.model.forward(image, text=text, boxes=boxes, points=points, **kwargs)
# processor
class SegVolProcessor():
def __init__(self, spatial_size) -> None:
self.img_loader = transforms.LoadImage()
self.transform = transforms.Compose(
[
ForegroundNormalization(keys=["image"]),
DimTranspose(keys=["image", "label"]),
MinMaxNormalization(),
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
transforms.ToTensord(keys=["image", "label"]),
]
)
self.zoom_out_transform = transforms.Resized(keys=["image", "label"], spatial_size=spatial_size, mode='nearest-exact')
# ct_path is path for a ct scan file with nii.gz format
# gt_path is path for a ground truth file with nii.gz format
def preprocess_ct_gt(self, ct_path, gt_path, category):
item = {}
# generate ct_voxel_ndarray
ct_voxel_ndarray, _ = self.img_loader(ct_path)
ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze()
ct_shape = ct_voxel_ndarray.shape
ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0)
item['image'] = ct_voxel_ndarray
# generate gt_voxel_ndarray
gt_voxel_ndarray, _ = self.img_loader(gt_path)
gt_voxel_ndarray = np.array(gt_voxel_ndarray)
present_categories = np.unique(gt_voxel_ndarray)
gt_masks = []
for cls_idx in range(len(category)):
# ignore background
cls = cls_idx + 1
if cls not in present_categories:
gt_voxel_ndarray_category = np.zeros(ct_shape)
gt_masks.append(gt_voxel_ndarray_category)
else:
gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
gt_masks.append(gt_voxel_ndarray_category)
gt_voxel_ndarray = np.stack(gt_masks, axis=0)
assert gt_voxel_ndarray.shape[0] == len(category) and gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
item['label'] = gt_voxel_ndarray.astype(np.int32)
# transform
return item['image'], item['label']
def zoom_transform(self, ct_npy, gt_npy):
item = {
'image': ct_npy,
'label': gt_npy
}
item = self.transform(item)
item_zoom_out = self.zoom_out_transform(item)
item['zoom_out_image'] = item_zoom_out['image']
item['zoom_out_label'] = item_zoom_out['label']
return item
def generate_box(self, pred_pre, bbox_shift=None):
meaning_post_label = pred_pre # [h, w, d]
ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
if all(tensor.nelement() == 0 for tensor in ones_idx):
bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
# print(bboxes, bboxes.shape)
return bboxes
min_coords = [dim.min() for dim in ones_idx] # [x_min, y_min, z_min]
max_coords = [dim.max() for dim in ones_idx] # [x_max, y_max, z_max]
if bbox_shift is None:
corner_min = []
corner_max = []
shape = meaning_post_label.shape
for coor in min_coords:
coor_ = max(0, coor)
corner_min.append(coor_)
for idx, coor in enumerate(max_coords):
coor_ = min(shape[idx], coor)
corner_max.append(coor_)
corner_min = torch.tensor(corner_min)
corner_max = torch.tensor(corner_max)
return torch.cat((corner_min, corner_max), dim=0)
else:
# add perturbation to bounding box coordinates
corner_min = []
corner_max = []
shape = meaning_post_label.shape
for coor in min_coords:
coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
corner_min.append(coor_)
for idx, coor in enumerate(max_coords):
coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
corner_max.append(coor_)
corner_min = torch.tensor(corner_min)
corner_max = torch.tensor(corner_max)
return torch.cat((corner_min, corner_max), dim=0)
def select_points(self, preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
spacial_dim = 3
points = torch.zeros((0, 3))
labels = torch.zeros((0))
pos_thred = 0.9
neg_thred = 0.1
# get pos/net indices
positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)
ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
if all(tmp.nelement() == 0 for tmp in ones_idx):
# all neg
num_positive_extra = 0
selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
points = torch.cat((points, selected_positive_point), dim=0)
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
else:
# random select a pos point
random_idx = torch.randint(len(positive_indices[0]), (1,))
selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
points = torch.cat((points, selected_positive_point), dim=0)
labels = torch.cat((labels, torch.ones((1))))
if num_positive_extra > 0:
pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
extra_positive_points = []
for pos_idx in pos_idx_list:
extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
points = torch.cat((points, extra_positive_points), dim=0)
labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))
if num_negative_extra > 0:
neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
extra_negative_points = []
for neg_idx in neg_idx_list:
extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
points = torch.cat((points, extra_negative_points), dim=0)
labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
# print('extra_negative_points ', extra_negative_points, extra_negative_points.shape)
# print('==> points ', points.shape, labels)
if fix_extra_point_num is None:
left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
else:
left_point_num = fix_extra_point_num + 1 - labels.shape[0]
for _ in range(left_point_num):
ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
points = torch.cat((points, ignore_point), dim=0)
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
return (points, labels)
class MinMaxNormalization(transforms.Transform):
def __call__(self, data):
d = dict(data)
k = "image"
d[k] = d[k] - d[k].min()
d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None)
return d
class DimTranspose(transforms.Transform):
def __init__(self, keys):
self.keys = keys
def __call__(self, data):
d = dict(data)
for key in self.keys:
d[key] = np.swapaxes(d[key], -1, -3)
return d
class ForegroundNormalization(transforms.Transform):
def __init__(self, keys):
self.keys = keys
def __call__(self, data):
d = dict(data)
for key in self.keys:
d[key] = self.normalize(d[key])
return d
def normalize(self, ct_narray):
ct_voxel_ndarray = ct_narray.copy()
ct_voxel_ndarray = ct_voxel_ndarray.flatten()
thred = np.mean(ct_voxel_ndarray)
voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
upper_bound = np.percentile(voxel_filtered, 99.95)
lower_bound = np.percentile(voxel_filtered, 00.05)
mean = np.mean(voxel_filtered)
std = np.std(voxel_filtered)
### transform ###
ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
ct_narray = (ct_narray - mean) / max(std, 1e-8)
return ct_narray
# SegVol
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextConfig
import random
#%% set up model
class SegVol(nn.Module):
def __init__(self,
image_encoder,
mask_decoder,
prompt_encoder,
roi_size,
patch_size,
test_mode=False,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
self.text_encoder = TextEncoder()
self.feat_shape = np.array(roi_size)/np.array(patch_size)
self.test_mode = test_mode
self.dice_loss = BinaryDiceLoss().cuda()
self.bce_loss = BCELoss().cuda()
self.decoder_iter = 6
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
bs = image.shape[0]
img_shape = (image.shape[2], image.shape[3], image.shape[4])
image_embedding, _ = self.image_encoder(image)
image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
# test mode
if self.test_mode:
return self.forward_decoder(image_embedding, img_shape, text, boxes, points)
# train mode
## sl
sl_loss = self.supervised_forward(image, image_embedding, img_shape, kwargs['train_organs'], kwargs['train_labels'])
## ssl
ssl_loss = self.unsupervised_forward(image, image_embedding, kwargs['pseudo_seg_cleaned'], img_shape)
return sl_loss, ssl_loss
def forward_decoder(self, image_embedding, img_shape, text=None, boxes=None, points=None):
with torch.no_grad():
if boxes is not None:
if len(boxes.shape) == 2:
boxes = boxes[:, None, :] # (B, 1, 6)
if text is not None:
text_embedding = self.text_encoder(text) # (B, 768)
else:
text_embedding = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=boxes,
masks=None,
text_embedding=text_embedding,
)
dense_pe = self.prompt_encoder.get_dense_pe()
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding,
text_embedding = text_embedding,
image_pe=dense_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
return logits
def supervised_forward(self, image, image_embedding, img_shape, training_organs, train_labels):
iter_points, iter_bboxes, iter_organs = self.build_prompt_label(image.shape[0], training_organs, train_labels)
# select prompt
prompt_options = [[None, iter_points, iter_organs], [iter_bboxes, None, iter_organs],
[None, None, iter_organs], [iter_bboxes, None, None], [None, iter_points, None],
[iter_bboxes, iter_points, None]]
sl_loss = 0
for prompt in prompt_options:
bboxes, points, organs = prompt
logits = self.forward_decoder(image_embedding, img_shape, text=organs, boxes=bboxes, points=points)
# cal loss
sl_loss_dice = self.dice_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
sl_loss_bce = self.bce_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
sl_loss += sl_loss_dice + sl_loss_bce
return sl_loss
def unsupervised_forward(self, image, image_embedding, pseudo_seg_cleaned, img_shape):
sll_loss = 0
for iter in range(self.decoder_iter):
if iter % 2 == 0:
pseudo_labels, pseudo_points_prompt = self.build_pseudo_point_prompt_label(image.shape, pseudo_seg_cleaned)
logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=None, points=pseudo_points_prompt)
else:
pseudo_labels, pseudo_bboxes_prompt = self.build_pseudo_box_prompt_label(image.shape, pseudo_seg_cleaned)
logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=pseudo_bboxes_prompt, points=None)
# cal loss
sll_loss_dice = self.dice_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
sll_loss_bce = self.bce_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
sll_loss += sll_loss_dice + sll_loss_bce
return sll_loss
def build_prompt_label(self, bs, training_organs, train_labels):
# generate prompt & label
iter_organs = []
iter_bboxes = []
iter_points_ax = []
iter_point_labels = []
for sample_idx in range(bs):
# organ prompt
iter_organs.append(training_organs)
# box prompt
box = generate_box(train_labels[sample_idx])
iter_bboxes.append(box)
# point prompt
num_positive_extra_max, num_negative_extra_max = 10, 10
num_positive_extra = random.randint(0, num_positive_extra_max)
num_negative_extra = random.randint(0, num_negative_extra_max)
point, point_label = select_points(
train_labels[sample_idx],
num_positive_extra=num_positive_extra,
num_negative_extra=num_negative_extra,
fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
iter_points_ax.append(point)
iter_point_labels.append(point_label)
# batched prompt
iter_points_ax = torch.stack(iter_points_ax, dim=0).cuda()
iter_point_labels = torch.stack(iter_point_labels, dim=0).cuda()
iter_points = (iter_points_ax, iter_point_labels)
iter_bboxes = torch.stack(iter_bboxes, dim=0).float().cuda()
return iter_points, iter_bboxes, iter_organs
def build_pseudo_point_prompt_label(self, input_shape, seg_labels):
pseudo_labels = torch.zeros(input_shape).cuda()
# generate points
points = []
point_labels = []
for batch_idx in range(input_shape[0]):
# generate pseudo label
unique_ids = torch.unique(seg_labels[batch_idx])
unique_ids = unique_ids[unique_ids != -1]
region_id = random.choice(unique_ids).item()
pseudo_labels[batch_idx][seg_labels[batch_idx]==region_id] = 1
# generate point prompt
num_positive_extra_max, num_negative_extra_max = 10, 10
num_positive_extra = random.randint(4, num_positive_extra_max)
num_negative_extra = random.randint(0, num_negative_extra_max)
assert len(pseudo_labels[batch_idx][0].shape) == 3
point, point_label = select_points(
pseudo_labels[batch_idx][0],
num_positive_extra=num_positive_extra,
num_negative_extra=num_negative_extra,
fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
points.append(point)
point_labels.append(point_label)
points = torch.stack(points, dim=0).cuda()
point_labels = torch.stack(point_labels, dim=0).cuda()
pseudo_points_prompt = (points, point_labels)
return pseudo_labels, pseudo_points_prompt
def build_pseudo_box_prompt_label(self, input_shape, seg_labels_cleaned):
pseudo_labels = torch.zeros(input_shape).cuda()
iter_bboxes = []
# generate boxes
for batch_idx in range(input_shape[0]):
# generate ori pseudo label
unique_ids = torch.unique(seg_labels_cleaned[batch_idx])
unique_ids = unique_ids[unique_ids != -1]
region_id = random.choice(unique_ids).item()
pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==region_id] = 1
# generate box prompt
box = generate_box(pseudo_labels[batch_idx][0])
iter_bboxes.append(box)
# refine pseudo label
x_min, y_min, z_min, x_max, y_max, z_max = box
binary_cube = torch.zeros_like(pseudo_labels[batch_idx][0]).int()
binary_cube[x_min:x_max+1, y_min:y_max+1, z_min:z_max+1] = 1
# cal iou
mask_label = seg_labels_cleaned[batch_idx][0]
assert binary_cube.shape == mask_label.shape, str(binary_cube.shape) + ' ' + str(mask_label.shape)
mask_values_in_binary_cube = mask_label[binary_cube == 1]
unique_mask_values = torch.unique(mask_values_in_binary_cube)
# print('unique_mask_values ', unique_mask_values)
for value in unique_mask_values:
if value == -1: continue
mask_area = (mask_label == value)
intersection = (binary_cube & mask_area)
iou = intersection.float().sum() / mask_area.float().sum()
if iou > 0.90:
# print(f"Mask value {value} has IOU > 0.90 in binary cube.")
pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==value] = 1
bboxes = torch.stack(iter_bboxes, dim=0).float().cuda()
return pseudo_labels, bboxes
class TextEncoder(nn.Module):
def __init__(self):
super().__init__()
config = CLIPTextConfig()
self.clip_text_model = CLIPTextModel(config)
self.tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
self.dim_align = nn.Linear(512, 768)
# freeze text encoder
for param in self.clip_text_model.parameters():
param.requires_grad = False
def organ2tokens(self, organ_names):
text_list = ['A computerized tomography of a {}.'.format(organ_name) for organ_name in organ_names]
tokens = self.tokenizer(text_list, padding=True, return_tensors="pt")
for key in tokens.keys():
tokens[key] = tokens[key].cuda()
return tokens
def forward(self, text):
if text is None:
return None
if type(text) is str:
text = [text]
tokens = self.organ2tokens(text)
clip_outputs = self.clip_text_model(**tokens)
text_embedding = clip_outputs.pooler_output
text_embedding = self.dim_align(text_embedding)
return text_embedding
# loss
import torch
import torch.nn as nn
class BinaryDiceLoss(nn.Module):
def __init__(self, smooth=1, p=2, reduction='mean'):
super(BinaryDiceLoss, self).__init__()
self.smooth = smooth
self.p = p
self.reduction = reduction
def forward(self, predict, target):
predict = torch.sigmoid(predict)
target_ = target.clone()
target_[target == -1] = 0
assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
predict = predict.contiguous().view(predict.shape[0], -1)
target_ = target_.contiguous().view(target_.shape[0], -1)
num = torch.sum(torch.mul(predict, target_), dim=1)
den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
dice_score = 2*num / den
dice_loss = 1 - dice_score
# dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
return dice_loss_avg
class BCELoss(nn.Module):
def __init__(self):
super(BCELoss, self).__init__()
self.criterion = nn.BCEWithLogitsLoss()
def forward(self, predict, target):
assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
target_ = target.clone()
target_[target == -1] = 0
ce_loss = self.criterion(predict, target_)
return ce_loss
# monai inference
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union
import torch
import torch.nn.functional as F
import random
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.transforms import Resize
from monai.utils import (
BlendMode,
PytorchPadMode,
convert_data_type,
ensure_tuple,
fall_back_tuple,
look_up_option,
optional_import,
)
tqdm, _ = optional_import("tqdm", name="tqdm")
__all__ = ["sliding_window_inference"]
def logits2roi_coor(spatial_size, logits_global_single):
# crop predict
pred_global_single = torch.sigmoid(logits_global_single) > 0.5
## get all pos idx
nonzero_indices = torch.nonzero(pred_global_single)
if nonzero_indices.shape[0] == 0:
return None, None, None, None, None, None
## get boundary
min_d, max_d = nonzero_indices[:, 0].min(), nonzero_indices[:, 0].max()
min_h, max_h = nonzero_indices[:, 1].min(), nonzero_indices[:, 1].max()
min_w, max_w = nonzero_indices[:, 2].min(), nonzero_indices[:, 2].max()
## padding
crop_d, crop_h, crop_w = max_d - min_d + 1, max_h - min_h + 1, max_w - min_w + 1,
window_d, window_h, window_w = spatial_size
padding_d, padding_h, padding_w = max(0, window_d-crop_d), max(0, window_h-crop_h), max(0, window_w-crop_w)
global_d, global_h, global_w = logits_global_single.shape
min_d = max(0, min_d - int(padding_d)//2)
min_h = max(0, min_h - int(padding_h)//2)
min_w = max(0, min_w - int(padding_w)//2)
max_d = min(global_d, max_d + int(padding_d)//2)
max_h = min(global_h, max_h + int(padding_h)//2)
max_w = min(global_w, max_w + int(padding_w)//2)
return min_d, min_h, min_w, max_d, max_h, max_w
def build_binary_cube(bbox, binary_cube_shape):
min_coord = bbox[0][:3].int().tolist()
max_coord = bbox[0][3:].int().tolist()
binary_cube = torch.zeros(binary_cube_shape)
binary_cube[min_coord[0]:max_coord[0]+1, min_coord[1]:max_coord[1]+1, min_coord[2]:max_coord[2]+1] = 1
return binary_cube
def build_binary_points(points, labels, shape):
binary_points = torch.zeros(shape, dtype=torch.int16)
binary_points[points[labels == 1, 0].long(), points[labels == 1, 1].long(), points[labels == 1, 2].long()] = 1
return binary_points
def sliding_window_inference(
inputs: torch.Tensor,
prompt_reflection: Union[torch.Tensor, Tuple[torch.Tensor, ...]],
roi_size: Union[Sequence[int], int],
sw_batch_size: int,
predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
overlap: float = 0.25,
mode: Union[BlendMode, str] = BlendMode.CONSTANT,
sigma_scale: Union[Sequence[float], float] = 0.125,
padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: Union[torch.device, str, None] = None,
device: Union[torch.device, str, None] = None,
progress: bool = False,
roi_weight_map: Union[torch.Tensor, None] = None,
*args: Any,
**kwargs: Any,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
"""
Sliding window inference on `inputs` with `predictor`.
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
could be ([128,64,256], [64,32,128]).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
To maintain the same spatial sizes, the output image will be cropped to the original input size.
Args:
inputs: input image to be processed (assuming NCHW[D])
roi_size: the spatial window size for inferences.
When its components have None or non-positives, the corresponding inputs dimension will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
predictor: given input tensor ``patch_data`` in shape NCHW[D],
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
to ensure the scaled output ROI sizes are still integers.
If the `predictor`'s input and output spatial sizes are different,
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
overlap: Amount of overlap between scans.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a `tqdm` progress bar.
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
args: optional args to be passed to ``predictor``.
kwargs: optional keyword args to be passed to ``predictor``.
Note:
- input must be channel-first and have a batch dim, supports N-D sliding window.
"""
print('sliding window inference for ROI')
text = kwargs['text']
use_box = kwargs['use_box']
use_point = kwargs['use_point']
assert not (use_box and use_point)
compute_dtype = inputs.dtype
num_spatial_dims = len(inputs.shape) - 2
if overlap < 0 or overlap >= 1:
raise ValueError("overlap must be >= 0 and < 1.")
# determine image spatial size and batch size
# Note: all input images must have the same image size and batch size
batch_size, _, *image_size_ = inputs.shape
if device is None:
device = inputs.device
if sw_device is None:
sw_device = inputs.device
roi_size = fall_back_tuple(roi_size, image_size_)
# in case that image size is smaller than roi size
image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
pad_size = []
for k in range(len(inputs.shape) - 1, 1, -1):
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
half = diff // 2
pad_size.extend([half, diff - half])
inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
#############
if use_point or use_box:
binary_prompt_map, global_preds = prompt_reflection
global_preds = F.pad(global_preds, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
#############
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
# Store all slices in list
slices = dense_patch_slices(image_size, roi_size, scan_interval)
num_win = len(slices) # number of windows per image
total_slices = num_win * batch_size # total number of windows
# Create window-level importance map
valid_patch_size = get_valid_patch_size(image_size, roi_size)
if valid_patch_size == roi_size and (roi_weight_map is not None):
importance_map = roi_weight_map
else:
try:
importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
except BaseException as e:
raise RuntimeError(
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
# handle non-positive weights
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)
# Perform predictions
dict_key, output_image_list, count_map_list = None, [], []
_initialized_ss = -1
is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple)
# for each patch
for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
unravel_slice = [
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
for idx in slice_range
]
window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(sw_device)
#############
boxes = None
points = None
if use_point:
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
point, point_label = select_points(window_binary_prompt_map.squeeze())
points = (point.unsqueeze(0).float().cuda(), point_label.unsqueeze(0).float().cuda())
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().cuda()
if use_box:
if num_win == 1:
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(window_binary_prompt_map.squeeze()).unsqueeze(0).float().cuda()
else:
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().cuda()
seg_prob_out = predictor(window_data, text, boxes, points) # batched patch segmentation
#############
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
seg_prob_tuple: Tuple[torch.Tensor, ...]
if isinstance(seg_prob_out, torch.Tensor):
seg_prob_tuple = (seg_prob_out,)
elif isinstance(seg_prob_out, Mapping):
if dict_key is None:
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
is_tensor_output = False
else:
seg_prob_tuple = ensure_tuple(seg_prob_out)
is_tensor_output = False
# for each output in multi-output list
for ss, seg_prob in enumerate(seg_prob_tuple):
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
# compute zoom scale: out_roi_size/in_roi_size
zoom_scale = []
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
):
_scale = out_w_i / float(in_w_i)
if not (img_s_i * _scale).is_integer():
warnings.warn(
f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
)
zoom_scale.append(_scale)
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
# construct multi-resolution outputs
output_classes = seg_prob.shape[1]
output_shape = [batch_size, output_classes] + [
int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
]
# allocate memory to store the full output and the count for overlapping parts
output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device))
count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device))
_initialized_ss += 1
# resizing the importance_map
resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)
# store the result in the proper location of the full output. Apply weights from importance map.
for idx, original_idx in zip(slice_range, unravel_slice):
# zoom roi
original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image
for axis in range(2, len(original_idx_zoom)):
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
warnings.warn(
f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
"Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
)
original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
# store results and weights
output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g]
count_map_list[ss][original_idx_zoom] += (
importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape)
)
# account for any overlapping sections
for ss in range(len(output_image_list)):
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)
# remove padding if image_size smaller than roi_size
for ss, output_i in enumerate(output_image_list):
if torch.isnan(output_i).any() or torch.isinf(output_i).any():
warnings.warn("Sliding window inference results contain NaN or Inf.")
zoom_scale = [
seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
]
final_slicing: List[slice] = []
for sp in range(num_spatial_dims):
slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
slice_dim = slice(
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
)
final_slicing.insert(0, slice_dim)
while len(final_slicing) < len(output_i.shape):
final_slicing.insert(0, slice(None))
output_image_list[ss] = output_i[final_slicing]
if dict_key is not None: # if output of predictor is a dict
final_output = dict(zip(dict_key, output_image_list))
else:
final_output = tuple(output_image_list) # type: ignore
return final_output[0] if is_tensor_output else final_output # type: ignore
def _get_scan_interval(
image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
) -> Tuple[int, ...]:
"""
Compute scan interval according to the image size, roi size and overlap.
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
use 1 instead to make sure sliding window works.
"""
if len(image_size) != num_spatial_dims:
raise ValueError("image coord different from spatial dims.")
if len(roi_size) != num_spatial_dims:
raise ValueError("roi coord different from spatial dims.")
scan_interval = []
for i in range(num_spatial_dims):
if roi_size[i] == image_size[i]:
scan_interval.append(int(roi_size[i]))
else:
interval = int(roi_size[i] * (1 - overlap))
scan_interval.append(interval if interval > 0 else 1)
return tuple(scan_interval)
# build 3D SAM
import torch
import numpy as np
from monai.networks.nets import ViT
def _build_sam(
image_encoder_type,
embed_dim,
patch_size,
checkpoint,
image_size,
):
mlp_dim = 3072
num_layers = 12
num_heads = 12
pos_embed = 'perceptron'
dropout_rate = 0.0
image_encoder=ViT(
in_channels=1,
img_size=image_size,
patch_size=patch_size,
hidden_size=embed_dim,
mlp_dim=mlp_dim,
num_layers=num_layers,
num_heads=num_heads,
pos_embed=pos_embed,
classification=False,
dropout_rate=dropout_rate,
)
image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location='cpu')['state_dict']
encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
image_encoder.load_state_dict(encoder_dict)
print(f'===> image_encoder.load_param: {checkpoint}')
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=embed_dim,
image_embedding_size=image_embedding_size,
input_image_size=image_size,
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
image_encoder_type=image_encoder_type,
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
image_size=np.array(image_size),
patch_size=np.array(patch_size),
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
return sam
# mask decoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn import functional as F
from typing import List, Tuple, Type, Optional
class MaskDecoder(nn.Module):
def __init__(
self,
*,
image_encoder_type: str,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
image_size,
patch_size,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
if image_encoder_type == 'swin_vit':
self.feat_shape = image_size/patch_size
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # swin
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit
activation(),
)
else:
self.feat_shape = image_size/patch_size * 2
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # vit
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
for i in range(self.num_mask_tokens)
]
)
self.iou_prediction_head = MLP(
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
self.txt_align_upscaled_embedding = nn.Linear(768, 96)
def forward(
self,
image_embeddings: torch.Tensor,
text_embedding: Optional[torch.Tensor],
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Returns:
torch.Tensor: batched predicted masks
"""
# print('--------------decoder here--------------')
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
text_embedding=text_embedding,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
text_embedding: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
if image_embeddings.shape[0] != tokens.shape[0]:
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
src = image_embeddings
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w, d = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w, d)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w, d = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
if text_embedding is not None:
text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
masks = masks + sim
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
# prompt encoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torch import nn
from typing import Any, Optional, Tuple, Type
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int, int],
input_image_size: Tuple[int, int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 3)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> int:
"""
Gets the batch size of the output given the batch size of the input prompts.
"""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
elif text_embedding is not None:
return text_embedding.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
bs = self._get_batch_size(points, boxes, masks, text_embedding)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if text_embedding is not None:
sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]), int(self.image_embedding_size[2])
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((3, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w, d = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w, d), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
z_embed = grid.cumsum(dim=2) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
z_embed = z_embed / d
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
return pe.permute(3, 0, 1, 2) # C x H x W x D
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
coords[:, :, 2] = coords[:, :, 2] / image_size[2]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
# two way transformer
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import Tensor, nn
import math
from typing import Tuple, Type
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w, d = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# sam
class Sam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder,
prompt_encoder,
mask_decoder,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self) -> Any:
return self.pixel_mean.device
@torch.no_grad()
def forward(
self,
batched_input: List[Dict[str, Any]],
multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_input (list(dict)): A list over input images, each a
dictionary with the following keys. A prompt key can be
excluded if it is not present.
'image': The image as a torch tensor in 3xHxW format,
already transformed for input to the model.
'original_size': (tuple(int, int)) The original size of
the image before transformation, as (H, W).
'point_coords': (torch.Tensor) Batched point prompts for
this image, with shape BxNx2. Already transformed to the
input frame of the model.
'point_labels': (torch.Tensor) Batched labels for point prompts,
with shape BxN.
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
Already transformed to the input frame of the model.
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
in the form Bx1xHxW.
multimask_output (bool): Whether the model should predict multiple
disambiguating masks, or return a single mask.
Returns:
(list(dict)): A list over input images, where each element is
as dictionary with the following keys.
'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input prompts,
C is determined by multimask_output, and (H, W) is the
original size of the image.
'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.
'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
"""
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
masks = self.postprocess_masks(
low_res_masks,
input_size=image_record["image"].shape[-2:],
original_size=image_record["original_size"],
)
masks = masks > self.mask_threshold
outputs.append(
{
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
return outputs
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
# TODO
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x