yuxin
commited on
Commit
•
2f9c026
1
Parent(s):
b3d03a4
add model
Browse files- model_segvol_single.py +101 -105
model_segvol_single.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from transformers import PreTrainedModel
|
2 |
-
from
|
3 |
import numpy as np
|
4 |
import monai.transforms as transforms
|
5 |
|
@@ -77,17 +77,111 @@ class SegVolProcessor():
|
|
77 |
|
78 |
# transform
|
79 |
item = self.transform(item)
|
80 |
-
print('ready for zoom out')
|
81 |
item_zoom_out = self.zoom_out_transform(item)
|
82 |
item['zoom_out_image'] = item_zoom_out['image']
|
83 |
item['zoom_out_label'] = item_zoom_out['label']
|
84 |
-
|
85 |
-
|
86 |
-
'\nZoom_out image shape: ', item['zoom_out_image'].shape,
|
87 |
-
'\nZoom_out label shape: ', item['zoom_out_label'].shape,
|
88 |
-
)
|
89 |
return item
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
class MinMaxNormalization(transforms.Transform):
|
92 |
def __call__(self, data):
|
93 |
d = dict(data)
|
@@ -767,104 +861,6 @@ def _get_scan_interval(
|
|
767 |
scan_interval.append(interval if interval > 0 else 1)
|
768 |
return tuple(scan_interval)
|
769 |
|
770 |
-
|
771 |
-
def generate_box(pred_pre, bbox_shift=None):
|
772 |
-
meaning_post_label = pred_pre # [h, w, d]
|
773 |
-
ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
|
774 |
-
if all(tensor.nelement() == 0 for tensor in ones_idx):
|
775 |
-
bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
|
776 |
-
# print(bboxes, bboxes.shape)
|
777 |
-
return bboxes
|
778 |
-
min_coords = [dim.min() for dim in ones_idx] # [x_min, y_min, z_min]
|
779 |
-
max_coords = [dim.max() for dim in ones_idx] # [x_max, y_max, z_max]
|
780 |
-
|
781 |
-
|
782 |
-
if bbox_shift is None:
|
783 |
-
corner_min = []
|
784 |
-
corner_max = []
|
785 |
-
shape = meaning_post_label.shape
|
786 |
-
for coor in min_coords:
|
787 |
-
coor_ = max(0, coor)
|
788 |
-
corner_min.append(coor_)
|
789 |
-
for idx, coor in enumerate(max_coords):
|
790 |
-
coor_ = min(shape[idx], coor)
|
791 |
-
corner_max.append(coor_)
|
792 |
-
corner_min = torch.tensor(corner_min)
|
793 |
-
corner_max = torch.tensor(corner_max)
|
794 |
-
return torch.cat((corner_min, corner_max), dim=0)
|
795 |
-
else:
|
796 |
-
# add perturbation to bounding box coordinates
|
797 |
-
corner_min = []
|
798 |
-
corner_max = []
|
799 |
-
shape = meaning_post_label.shape
|
800 |
-
for coor in min_coords:
|
801 |
-
coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
|
802 |
-
corner_min.append(coor_)
|
803 |
-
for idx, coor in enumerate(max_coords):
|
804 |
-
coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
|
805 |
-
corner_max.append(coor_)
|
806 |
-
corner_min = torch.tensor(corner_min)
|
807 |
-
corner_max = torch.tensor(corner_max)
|
808 |
-
return torch.cat((corner_min, corner_max), dim=0)
|
809 |
-
|
810 |
-
|
811 |
-
def select_points(preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
|
812 |
-
spacial_dim = 3
|
813 |
-
points = torch.zeros((0, 3))
|
814 |
-
labels = torch.zeros((0))
|
815 |
-
pos_thred = 0.9
|
816 |
-
neg_thred = 0.1
|
817 |
-
|
818 |
-
# get pos/net indices
|
819 |
-
positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
|
820 |
-
negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)
|
821 |
-
|
822 |
-
ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
|
823 |
-
if all(tmp.nelement() == 0 for tmp in ones_idx):
|
824 |
-
# all neg
|
825 |
-
num_positive_extra = 0
|
826 |
-
selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
827 |
-
points = torch.cat((points, selected_positive_point), dim=0)
|
828 |
-
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
829 |
-
else:
|
830 |
-
# random select a pos point
|
831 |
-
random_idx = torch.randint(len(positive_indices[0]), (1,))
|
832 |
-
selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
|
833 |
-
points = torch.cat((points, selected_positive_point), dim=0)
|
834 |
-
labels = torch.cat((labels, torch.ones((1))))
|
835 |
-
|
836 |
-
if num_positive_extra > 0:
|
837 |
-
pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
|
838 |
-
extra_positive_points = []
|
839 |
-
for pos_idx in pos_idx_list:
|
840 |
-
extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
|
841 |
-
extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
|
842 |
-
points = torch.cat((points, extra_positive_points), dim=0)
|
843 |
-
labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))
|
844 |
-
|
845 |
-
if num_negative_extra > 0:
|
846 |
-
neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
|
847 |
-
extra_negative_points = []
|
848 |
-
for neg_idx in neg_idx_list:
|
849 |
-
extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
|
850 |
-
extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
|
851 |
-
points = torch.cat((points, extra_negative_points), dim=0)
|
852 |
-
labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
|
853 |
-
# print('extra_negative_points ', extra_negative_points, extra_negative_points.shape)
|
854 |
-
# print('==> points ', points.shape, labels)
|
855 |
-
|
856 |
-
if fix_extra_point_num is None:
|
857 |
-
left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
|
858 |
-
else:
|
859 |
-
left_point_num = fix_extra_point_num + 1 - labels.shape[0]
|
860 |
-
|
861 |
-
for _ in range(left_point_num):
|
862 |
-
ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
863 |
-
points = torch.cat((points, ignore_point), dim=0)
|
864 |
-
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
865 |
-
|
866 |
-
return (points, labels)
|
867 |
-
|
868 |
# build 3D SAM
|
869 |
import torch
|
870 |
import numpy as np
|
|
|
1 |
from transformers import PreTrainedModel
|
2 |
+
from config_segvol import SegVolConfig
|
3 |
import numpy as np
|
4 |
import monai.transforms as transforms
|
5 |
|
|
|
77 |
|
78 |
# transform
|
79 |
item = self.transform(item)
|
|
|
80 |
item_zoom_out = self.zoom_out_transform(item)
|
81 |
item['zoom_out_image'] = item_zoom_out['image']
|
82 |
item['zoom_out_label'] = item_zoom_out['label']
|
83 |
+
del item['image_transforms']
|
84 |
+
del item['label_transforms']
|
|
|
|
|
|
|
85 |
return item
|
86 |
|
87 |
+
|
88 |
+
def generate_box(self, pred_pre, bbox_shift=None):
|
89 |
+
meaning_post_label = pred_pre # [h, w, d]
|
90 |
+
ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
|
91 |
+
if all(tensor.nelement() == 0 for tensor in ones_idx):
|
92 |
+
bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
|
93 |
+
# print(bboxes, bboxes.shape)
|
94 |
+
return bboxes
|
95 |
+
min_coords = [dim.min() for dim in ones_idx] # [x_min, y_min, z_min]
|
96 |
+
max_coords = [dim.max() for dim in ones_idx] # [x_max, y_max, z_max]
|
97 |
+
|
98 |
+
|
99 |
+
if bbox_shift is None:
|
100 |
+
corner_min = []
|
101 |
+
corner_max = []
|
102 |
+
shape = meaning_post_label.shape
|
103 |
+
for coor in min_coords:
|
104 |
+
coor_ = max(0, coor)
|
105 |
+
corner_min.append(coor_)
|
106 |
+
for idx, coor in enumerate(max_coords):
|
107 |
+
coor_ = min(shape[idx], coor)
|
108 |
+
corner_max.append(coor_)
|
109 |
+
corner_min = torch.tensor(corner_min)
|
110 |
+
corner_max = torch.tensor(corner_max)
|
111 |
+
return torch.cat((corner_min, corner_max), dim=0)
|
112 |
+
else:
|
113 |
+
# add perturbation to bounding box coordinates
|
114 |
+
corner_min = []
|
115 |
+
corner_max = []
|
116 |
+
shape = meaning_post_label.shape
|
117 |
+
for coor in min_coords:
|
118 |
+
coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
|
119 |
+
corner_min.append(coor_)
|
120 |
+
for idx, coor in enumerate(max_coords):
|
121 |
+
coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
|
122 |
+
corner_max.append(coor_)
|
123 |
+
corner_min = torch.tensor(corner_min)
|
124 |
+
corner_max = torch.tensor(corner_max)
|
125 |
+
return torch.cat((corner_min, corner_max), dim=0)
|
126 |
+
|
127 |
+
|
128 |
+
def select_points(self, preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
|
129 |
+
spacial_dim = 3
|
130 |
+
points = torch.zeros((0, 3))
|
131 |
+
labels = torch.zeros((0))
|
132 |
+
pos_thred = 0.9
|
133 |
+
neg_thred = 0.1
|
134 |
+
|
135 |
+
# get pos/net indices
|
136 |
+
positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
|
137 |
+
negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)
|
138 |
+
|
139 |
+
ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
|
140 |
+
if all(tmp.nelement() == 0 for tmp in ones_idx):
|
141 |
+
# all neg
|
142 |
+
num_positive_extra = 0
|
143 |
+
selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
144 |
+
points = torch.cat((points, selected_positive_point), dim=0)
|
145 |
+
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
146 |
+
else:
|
147 |
+
# random select a pos point
|
148 |
+
random_idx = torch.randint(len(positive_indices[0]), (1,))
|
149 |
+
selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
|
150 |
+
points = torch.cat((points, selected_positive_point), dim=0)
|
151 |
+
labels = torch.cat((labels, torch.ones((1))))
|
152 |
+
|
153 |
+
if num_positive_extra > 0:
|
154 |
+
pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
|
155 |
+
extra_positive_points = []
|
156 |
+
for pos_idx in pos_idx_list:
|
157 |
+
extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
|
158 |
+
extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
|
159 |
+
points = torch.cat((points, extra_positive_points), dim=0)
|
160 |
+
labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))
|
161 |
+
|
162 |
+
if num_negative_extra > 0:
|
163 |
+
neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
|
164 |
+
extra_negative_points = []
|
165 |
+
for neg_idx in neg_idx_list:
|
166 |
+
extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
|
167 |
+
extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
|
168 |
+
points = torch.cat((points, extra_negative_points), dim=0)
|
169 |
+
labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
|
170 |
+
# print('extra_negative_points ', extra_negative_points, extra_negative_points.shape)
|
171 |
+
# print('==> points ', points.shape, labels)
|
172 |
+
|
173 |
+
if fix_extra_point_num is None:
|
174 |
+
left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
|
175 |
+
else:
|
176 |
+
left_point_num = fix_extra_point_num + 1 - labels.shape[0]
|
177 |
+
|
178 |
+
for _ in range(left_point_num):
|
179 |
+
ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
180 |
+
points = torch.cat((points, ignore_point), dim=0)
|
181 |
+
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
182 |
+
|
183 |
+
return (points, labels)
|
184 |
+
|
185 |
class MinMaxNormalization(transforms.Transform):
|
186 |
def __call__(self, data):
|
187 |
d = dict(data)
|
|
|
861 |
scan_interval.append(interval if interval > 0 else 1)
|
862 |
return tuple(scan_interval)
|
863 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
864 |
# build 3D SAM
|
865 |
import torch
|
866 |
import numpy as np
|