File size: 11,775 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
########################################################################################################################
#                                                          IMPORT                                                      #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse

from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params

from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVIALMODITrainer
from singleVis.data import NormalDataProvider
from singleVis.spatial_skeleton_edge_constructor import OriginSingleEpochSpatialEdgeConstructor, PredDistSingleEpochSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.eval.evaluator import Evaluator
from singleVis.utils import find_neighbor_preserving_rate
from singleVis.visualizer import visualizer
from trustVis.skeleton_generator import CenterSkeletonGenerator
########################################################################################################################
#                                                    PARAMETERS                                                   #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight

########################################################################################################################
#                                                     LOAD PARAMETERS                                                  #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')

# get workspace dir
current_path = os.getcwd()

new_path = os.path.join(current_path, 'training_dynamic')

parser.add_argument('--content_path', type=str,default=new_path)
parser.add_argument('--base', type=str,default='proxy')
parser.add_argument('--name', type=str,default='trustvis')
parser.add_argument('--start', type=int,default=1)
parser.add_argument('--end', type=int,default=3)
parser.add_argument('--epoch', type=int,default=3)
args = parser.parse_args()


SAVED_NAME = args.name


CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
    config = json.load(f)
config = config[VIS_METHOD]


SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
EPOCH_START = args.epoch
EPOCH_END = args.epoch
EPOCH_PERIOD = 1

# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]

# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]

VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]

# Define hyperparameters
GPU_ID = 1
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")

import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))

########################################################################################################################
#                                                    TRAINING SETTING                                                  #
########################################################################################################################
BASE_MODEL_NAME = args.base
# PREPROCESS = 1
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, classes=CLASSES, epoch_name='Epoch', verbose=1)
# if PREPROCESS:
#     data_provider._meta_data()
#     if B_N_EPOCHS >0:
#         data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)

# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)

# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=BASE_MODEL_NAME, device=DEVICE) # vis_model_name 一个初始的dvi

start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)

for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
    # Define DVI Loss
    if start_flag:
        temporal_loss_fn = DummyTemporalLoss(DEVICE)
        criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=0.0, device=DEVICE)
        start_flag = 0
    else:
        # TODO AL mode, redefine train_representation
        prev_data = data_provider.train_representation(iteration-EPOCH_PERIOD)
        curr_data = data_provider.train_representation(iteration)
        npr = find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)
        temporal_loss_fn = TemporalLoss(w_prev, DEVICE)
        criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=torch.from_numpy(LAMBDA2*npr), device=DEVICE)
    
    vis = visualizer(data_provider, projector, 200, "tab10")
    grid_high, grid_emd ,border = vis.get_epoch_decision_view(iteration,400,None, True)
    train_data_embedding = projector.batch_project(iteration, data_provider.train_representation(iteration))
    from sklearn.neighbors import NearestNeighbors
    import numpy as np

    # 假设 train_data_embedding 和 grid_emd 都是 numpy arrays,每一行都是一个点
    threshold = 5  # hyper-peremeter

    # use train_data_embedding initialize NearestNeighbors 
    nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train_data_embedding)
    # for each grid_emd,find train_data_embedding nearest sample
    distances, indices = nbrs.kneighbors(grid_emd)
    # filter by distance
    mask = distances.ravel() < threshold
    selected_indices = np.arange(grid_emd.shape[0])[mask]

    grid_high_mask = grid_high[selected_indices]

    skeleton_generator = CenterSkeletonGenerator(data_provider,iteration,0.5,500)
    high_bom, high_rad = skeleton_generator.center_skeleton_genertaion()
    print("number",len(high_bom))
       
    # Define training parameters
    optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
    # Define Edge dataset
    t0 = time.time()
    spatial_cons = OriginSingleEpochSpatialEdgeConstructor(data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS)
    edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
    t1 = time.time()

    probs = probs / (probs.max()+1e-3)
    eliminate_zeros = probs> 1e-3    #1e-3
    edge_to = edge_to[eliminate_zeros]
    edge_from = edge_from[eliminate_zeros]
    probs = probs[eliminate_zeros]
    
    dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention)

    n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
    # chose sampler based on the number of dataset
    if len(edge_to) > pow(2,24):
        sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
    else:
        sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
    edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)

    ########################################################################################################################
    #                                                       TRAIN                                                          #
    ########################################################################################################################
    file_path = os.path.join(data_provider.content_path, "Model", "Epoch_{}".format(iteration), "{}.pth".format(BASE_MODEL_NAME))
    save_model = torch.load(file_path, map_location="cpu")
    model.load_state_dict(save_model["state_dict"])

    trainer = DVIALMODITrainer(model, criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=DEVICE, grid_high_mask=grid_high_mask, high_bom=high_bom, high_rad=high_rad, iteration=iteration, data_provider=data_provider, prev_model=prev_model, S_N_EPOCHS=S_N_EPOCHS, B_N_EPOCHS=B_N_EPOCHS, N_NEIGHBORS=N_NEIGHBORS)

    t2=time.time()
    trainer.train(PATIENT, MAX_EPOCH)
    t3 = time.time()

    # save result
    save_dir = data_provider.model_path
    trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
    trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
    save_dir = os.path.join(data_provider.model_path, "Epoch_{}".format(iteration))
    trainer.save(save_dir=save_dir, file_name="{}".format(SAVED_NAME))

    print("Finish epoch {}...".format(iteration))

    prev_model.load_state_dict(model.state_dict())
    for param in prev_model.parameters():
        param.requires_grad = False
    w_prev = dict(prev_model.named_parameters())

print('aaacccllll runtime', t3-t0)
########################################################################################################################
#                                                      VISUALIZATION                                                   #
########################################################################################################################

from singleVis.visualizer import visualizer

vis = visualizer(data_provider, projector, 200, "tab10")
save_dir = os.path.join(data_provider.content_path, "Trust_al")
if not os.path.exists(save_dir):
    os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
    vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}.png".format(VIS_MODEL_NAME, i, VIS_METHOD)))

    
########################################################################################################################
#                                                       EVALUATION                                                     #
########################################################################################################################

evaluator = Evaluator(data_provider, projector)




Evaluation_NAME = 'trustvis_al_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
    evaluator.save_epoch_eval(i, 15, temporal_k=5, file_name="{}".format(Evaluation_NAME))