File size: 11,810 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
########################################################################################################################
#                                                          IMPORT                                                      #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse

from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params

from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVITrainer
from singleVis.eval.evaluator import Evaluator
from singleVis.data import NormalDataProvider
# from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor

from singleVis.projector import DVIProjector
from singleVis.utils import find_neighbor_preserving_rate

from trustVis.skeleton_generator import CenterSkeletonGenerator
########################################################################################################################
#                                                     DVI PARAMETERS                                                   #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight

########################################################################################################################
#                                                     LOAD PARAMETERS                                                  #
########################################################################################################################


parser = argparse.ArgumentParser(description='Process hyperparameters...')

# get workspace dir
current_path = os.getcwd()

new_path = os.path.join(current_path, 'training_dynamic')

parser.add_argument('--content_path', type=str,default=new_path)
# parser.add_argument('--start', type=int,default=1)
# parser.add_argument('--end', type=int,default=3)
parser.add_argument('--epoch' ,default=3)

# parser.add_argument('--epoch_end', type=int)
parser.add_argument('--epoch_period', type=int,default=1)
parser.add_argument('--preprocess', type=int,default=0)
parser.add_argument('--base',type=bool,default=False)
args = parser.parse_args()

CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
    config = json.load(f)
config = config[VIS_METHOD]

# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) 
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")

SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
GPU_ID = 0
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]

EPOCH_START = args.epoch
EPOCH_END = args.epoch
EPOCH_PERIOD = args.epoch_period

# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]

# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]




S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]

VIS_MODEL_NAME = 'proxy' ### saved_as 

EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]

# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")

import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))

########################################################################################################################
#                                                    TRAINING SETTING                                                  #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)
PREPROCESS = args.preprocess
if PREPROCESS:
    data_provider._meta_data()
    if B_N_EPOCHS >0:
        data_provider._estimate_boundary(LEN // 10, l_bound=L_BOUND)

# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)


# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)



    

start_flag = 1

prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)

for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
    # Define DVI Loss
    if start_flag:
        temporal_loss_fn = DummyTemporalLoss(DEVICE)
        criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=0.0,device=DEVICE)
        start_flag = 0
    else:
        # TODO AL mode, redefine train_representation
        prev_data = data_provider.train_representation(iteration-EPOCH_PERIOD)
        prev_data = prev_data.reshape(prev_data.shape[0],prev_data.shape[1])
        curr_data = data_provider.train_representation(iteration)
        curr_data = curr_data.reshape(curr_data.shape[0],curr_data.shape[1])
        t_1= time.time()
        npr = torch.tensor(find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)).to(DEVICE)
        t_2= time.time()
     
        temporal_loss_fn = TemporalLoss(w_prev, DEVICE)
        criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=LAMBDA2*npr,device=DEVICE)
    # Define training parameters
    optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
    # Define Edge dataset
    
    ###### generate the skeleton

    skeleton_generator = CenterSkeletonGenerator(data_provider,EPOCH_START,1)
    # Start timing
    start_time = time.time()
    ## gennerate skeleton
    high_bom,_ = skeleton_generator.center_skeleton_genertaion()


    end_time = time.time()
    elapsed_time = end_time - start_time
    print("proxy generation finished ")
    

    t0 = time.time()
    ##### construct the spitial complex
    spatial_cons = ProxyBasedSpatialEdgeConstructor(data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS, net,high_bom)
    edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
    t1 = time.time()

    print('complex-construct:', t1-t0)

    probs = probs / (probs.max()+1e-3)
    eliminate_zeros = probs> 1e-3    #1e-3
    edge_to = edge_to[eliminate_zeros]
    edge_from = edge_from[eliminate_zeros]
    probs = probs[eliminate_zeros]
    
    dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention)

    n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
    # chose sampler based on the number of dataset
    if len(edge_to) > pow(2,24):
        sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
    else:
        sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
    edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)

    ########################################################################################################################
    #                                                       TRAIN                                                          #
    ########################################################################################################################

    trainer = DVITrainer(model, criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=DEVICE)

    t2=time.time()
    trainer.train(PATIENT, MAX_EPOCH)
    t3 = time.time()
    print('training:', t3-t2)
    # save result
    save_dir = data_provider.model_path
    trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
    trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
    save_dir = os.path.join(data_provider.model_path, "Epoch_{}".format(iteration))
    trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))

    print("Finish epoch {}...".format(iteration))

    prev_model.load_state_dict(model.state_dict())
    for param in prev_model.parameters():
        param.requires_grad = False
    w_prev = dict(prev_model.named_parameters())
    

########################################################################################################################
#                                                      VISUALIZATION                                                   #
########################################################################################################################

from singleVis.visualizer import visualizer
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) 
vis = visualizer(data_provider, projector, 200, "tab10")
save_dir = os.path.join(data_provider.content_path, "Proxy")

if not os.path.exists(save_dir):
    os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
    vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}_{}.png".format(DATASET, i, VIS_METHOD,now)))
    data = data_provider.train_representation(i)
    data = data.reshape(data.shape[0],data.shape[1])

    ##### save embeddings and background for visualization
    emb = projector.batch_project(i,data)
    np.save(os.path.join(CONTENT_PATH, 'Model', 'Epoch_{}'.format(i), 'embedding.npy'), emb)
    vis.get_background(i,200)

# emb = projector.batch_project(data_provider)

    
########################################################################################################################
#                                                       EVALUATION                                                     #
########################################################################################################################
# eval_epochs = range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD)
# EVAL_EPOCH_DICT = {
#     "mnist":[1,10,15],
#     "fmnist":[1,25,50],
#     "cifar10":[1,100,199]
# }
# eval_epochs = EVAL_EPOCH_DICT[DATASET]
evaluator = Evaluator(data_provider, projector)




Evaluation_NAME = 'proxy_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
    evaluator.save_epoch_eval(i, 15, temporal_k=5, file_name="{}".format(Evaluation_NAME))